What is Image Restoration? Image restoration is the process of improving the quality of an image by removing noise, blurring, or other distortions.
Papers and Code
Jul 30, 2025
Abstract:Moir\'e patterns, caused by frequency aliasing between fine repetitive structures and a camera sensor's sampling process, have been a significant obstacle in various real-world applications, such as consumer photography and industrial defect inspection. With the advancements in deep learning algorithms, numerous studies-predominantly based on convolutional neural networks-have suggested various solutions to address this issue. Despite these efforts, existing approaches still struggle to effectively eliminate artifacts due to the diverse scales, orientations, and color shifts of moir\'e patterns, primarily because the constrained receptive field of CNN-based architectures limits their ability to capture the complex characteristics of moir\'e patterns. In this paper, we propose MZNet, a U-shaped network designed to bring images closer to a 'Moire-Zero' state by effectively removing moir\'e patterns. It integrates three specialized components: Multi-Scale Dual Attention Block (MSDAB) for extracting and refining multi-scale features, Multi-Shape Large Kernel Convolution Block (MSLKB) for capturing diverse moir\'e structures, and Feature Fusion-Based Skip Connection for enhancing information flow. Together, these components enhance local texture restoration and large-scale artifact suppression. Experiments on benchmark datasets demonstrate that MZNet achieves state-of-the-art performance on high-resolution datasets and delivers competitive results on lower-resolution dataset, while maintaining a low computational cost, suggesting that it is an efficient and practical solution for real-world applications. Project page: https://sngryonglee.github.io/MoireZero
Via

Jul 24, 2025
Abstract:Recent advancements in multi-view 3D reconstruction and novel-view synthesis, particularly through Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have greatly enhanced the fidelity and efficiency of 3D content creation. However, inpainting 3D scenes remains a challenging task due to the inherent irregularity of 3D structures and the critical need for maintaining multi-view consistency. In this work, we propose a novel 3D Gaussian inpainting framework that reconstructs complete 3D scenes by leveraging sparse inpainted views. Our framework incorporates an automatic Mask Refinement Process and region-wise Uncertainty-guided Optimization. Specifically, we refine the inpainting mask using a series of operations, including Gaussian scene filtering and back-projection, enabling more accurate localization of occluded regions and realistic boundary restoration. Furthermore, our Uncertainty-guided Fine-grained Optimization strategy, which estimates the importance of each region across multi-view images during training, alleviates multi-view inconsistencies and enhances the fidelity of fine details in the inpainted results. Comprehensive experiments conducted on diverse datasets demonstrate that our approach outperforms existing state-of-the-art methods in both visual quality and view consistency.
Via

Aug 01, 2025
Abstract:Depth map super-resolution technology aims to improve the spatial resolution of low-resolution depth maps and effectively restore high-frequency detail information. Traditional convolutional neural network has limitations in dealing with long-range dependencies and are unable to fully model the global contextual information in depth maps. Although transformer can model global dependencies, its computational complexity and memory consumption are quadratic, which significantly limits its ability to process high-resolution depth maps. In this paper, we propose a multi-scale fusion U-shaped Mamba (MSF-UM) model, a novel guided depth map super-resolution framework. The core innovation of this model is to integrate Mamba's efficient state-space modeling capabilities into a multi-scale U-shaped fusion structure guided by a color image. The structure combining the residual dense channel attention block and the Mamba state space module is designed, which combines the local feature extraction capability of the convolutional layer with the modeling advantage of the state space model for long-distance dependencies. At the same time, the model adopts a multi-scale cross-modal fusion strategy to make full use of the high-frequency texture information from the color image to guide the super-resolution process of the depth map. Compared with existing mainstream methods, the proposed MSF-UM significantly reduces the number of model parameters while achieving better reconstruction accuracy. Extensive experiments on multiple publicly available datasets validate the effectiveness of the model, especially showing excellent generalization ability in the task of large-scale depth map super-resolution.
Via

Jul 29, 2025
Abstract:Existing shadow removal methods often rely on shadow masks, which are challenging to acquire in real-world scenarios. Exploring intrinsic image cues, such as local contrast information, presents a potential alternative for guiding shadow removal in the absence of explicit masks. However, the cue's inherent ambiguity becomes a critical limitation in complex scenes, where it can fail to distinguish true shadows from low-reflectance objects and intricate background textures. To address this motivation, we propose the Adaptive Gated Dual-Branch Attention (AGBA) mechanism. AGBA dynamically filters and re-weighs the contrast prior to effectively disentangle shadow features from confounding visual elements. Furthermore, to tackle the persistent challenge of restoring soft shadow boundaries and fine-grained details, we introduce a diffusion-based Frequency-Contrast Fusion Network (FCFN) that leverages high-frequency and contrast cues to guide the generative process. Extensive experiments demonstrate that our method achieves state-of-the-art results among mask-free approaches while maintaining competitive performance relative to mask-based methods.
Via

Jun 24, 2025
Abstract:We study NAFNet (Nonlinear Activation Free Network), a simple and efficient deep learning baseline for image restoration. By using CIFAR10 images corrupted with noise and blur, we conduct an ablation study of NAFNet's core components. Our baseline model implements SimpleGate activation, Simplified Channel Activation (SCA), and LayerNormalization. We compare this baseline to different variants that replace or remove components. Quantitative results (PSNR, SSIM) and examples illustrate how each modification affects restoration performance. Our findings support the NAFNet design: the SimpleGate and simplified attention mechanisms yield better results than conventional activations and attention, while LayerNorm proves to be important for stable training. We conclude with recommendations for model design, discuss potential improvements, and future work.
Via

Jul 26, 2025
Abstract:Accurate medical image segmentation remains challenging due to blurred lesion boundaries (LBA), loss of high-frequency details (LHD), and difficulty in modeling long-range anatomical structures (DC-LRSS). Vision Mamba employs one-dimensional causal state-space recurrence to efficiently model global dependencies, thereby substantially mitigating DC-LRSS. However, its patch tokenization and 1D serialization disrupt local pixel adjacency and impose a low-pass filtering effect, resulting in Local High-frequency Information Capture Deficiency (LHICD) and two-dimensional Spatial Structure Degradation (2D-SSD), which in turn exacerbate LBA and LHD. In this work, we propose FaRMamba, a novel extension that explicitly addresses LHICD and 2D-SSD through two complementary modules. A Multi-Scale Frequency Transform Module (MSFM) restores attenuated high-frequency cues by isolating and reconstructing multi-band spectra via wavelet, cosine, and Fourier transforms. A Self-Supervised Reconstruction Auxiliary Encoder (SSRAE) enforces pixel-level reconstruction on the shared Mamba encoder to recover full 2D spatial correlations, enhancing both fine textures and global context. Extensive evaluations on CAMUS echocardiography, MRI-based Mouse-cochlea, and Kvasir-Seg endoscopy demonstrate that FaRMamba consistently outperforms competitive CNN-Transformer hybrids and existing Mamba variants, delivering superior boundary accuracy, detail preservation, and global coherence without prohibitive computational overhead. This work provides a flexible frequency-aware framework for future segmentation models that directly mitigates core challenges in medical imaging.
Via

Jul 22, 2025
Abstract:Shadows are a common factor degrading image quality. Single-image shadow removal (SR), particularly under challenging indirect illumination, is hampered by non-uniform content degradation and inherent ambiguity. Consequently, traditional methods often fail to simultaneously recover intra-shadow details and maintain sharp boundaries, resulting in inconsistent restoration and blurring that negatively affect both downstream applications and the overall viewing experience. To overcome these limitations, we propose the DenseSR, approaching the problem from a dense prediction perspective to emphasize restoration quality. This framework uniquely synergizes two key strategies: (1) deep scene understanding guided by geometric-semantic priors to resolve ambiguity and implicitly localize shadows, and (2) high-fidelity restoration via a novel Dense Fusion Block (DFB) in the decoder. The DFB employs adaptive component processing-using an Adaptive Content Smoothing Module (ACSM) for consistent appearance and a Texture-Boundary Recuperation Module (TBRM) for fine textures and sharp boundaries-thereby directly tackling the inconsistent restoration and blurring issues. These purposefully processed components are effectively fused, yielding an optimized feature representation preserving both consistency and fidelity. Extensive experimental results demonstrate the merits of our approach over existing methods. Our code can be available on https://github$.$com/VanLinLin/DenseSR
* Paper accepted to ACMMM 2025
Via

Jul 03, 2025
Abstract:Current methods for restoring underexposed images typically rely on supervised learning with paired underexposed and well-illuminated images. However, collecting such datasets is often impractical in real-world scenarios. Moreover, these methods can lead to over-enhancement, distorting well-illuminated regions. To address these issues, we propose IGDNet, a Zero-Shot enhancement method that operates solely on a single test image, without requiring guiding priors or training data. IGDNet exhibits strong generalization ability and effectively suppresses noise while restoring illumination. The framework comprises a decomposition module and a denoising module. The former separates the image into illumination and reflection components via a dense connection network, while the latter enhances non-uniformly illuminated regions using an illumination-guided pixel adaptive correction method. A noise pair is generated through downsampling and refined iteratively to produce the final result. Extensive experiments on four public datasets demonstrate that IGDNet significantly improves visual quality under complex lighting conditions. Quantitative results on metrics like PSNR (20.41dB) and SSIM (0.860dB) show that it outperforms 14 state-of-the-art unsupervised methods. The code will be released soon.
* Submitted to IEEE Transactions on Artificial Intelligence (TAI) on
Oct.31, 2024
Via

Jul 09, 2025
Abstract:Low-Light Image Enhancement (LLIE) aims to restore vivid content and details from corrupted low-light images. However, existing standard RGB (sRGB) color space-based LLIE methods often produce color bias and brightness artifacts due to the inherent high color sensitivity. While Hue, Saturation, and Value (HSV) color space can decouple brightness and color, it introduces significant red and black noise artifacts. To address this problem, we propose a new color space for LLIE, namely Horizontal/Vertical-Intensity (HVI), defined by the HV color map and learnable intensity. The HV color map enforces small distances for the red coordinates to remove red noise artifacts, while the learnable intensity compresses the low-light regions to remove black noise artifacts. Additionally, we introduce the Color and Intensity Decoupling Network+ (HVI-CIDNet+), built upon the HVI color space, to restore damaged content and mitigate color distortion in extremely dark regions. Specifically, HVI-CIDNet+ leverages abundant contextual and degraded knowledge extracted from low-light images using pre-trained vision-language models, integrated via a novel Prior-guided Attention Block (PAB). Within the PAB, latent semantic priors can promote content restoration, while degraded representations guide precise color correction, both particularly in extremely dark regions through the meticulously designed cross-attention fusion mechanism. Furthermore, we construct a Region Refinement Block that employs convolution for information-rich regions and self-attention for information-scarce regions, ensuring accurate brightness adjustments. Comprehensive results from benchmark experiments demonstrate that the proposed HVI-CIDNet+ outperforms the state-of-the-art methods on 10 datasets.
* 14 pages
Via

Jul 23, 2025
Abstract:Facial filters are now commonplace for social media users around the world. Previous work has demonstrated that facial filters can negatively impact automated face recognition performance. However, these studies focus on small numbers of hand-picked filters in particular styles. In order to more effectively incorporate the wide ranges of filters present on various social media applications, we introduce a framework that allows for larger-scale study of the impact of facial filters on automated recognition. This framework includes a controlled dataset of face images, a principled filter selection process that selects a representative range of filters for experimentation, and a set of experiments to evaluate the filters' impact on recognition. We demonstrate our framework with a case study of filters from the American applications Instagram and Snapchat and the Chinese applications Meitu and Pitu to uncover cross-cultural differences. Finally, we show how the filtering effect in a face embedding space can easily be detected and restored to improve face recognition performance.
Via
