Abstract:Depth map super-resolution technology aims to improve the spatial resolution of low-resolution depth maps and effectively restore high-frequency detail information. Traditional convolutional neural network has limitations in dealing with long-range dependencies and are unable to fully model the global contextual information in depth maps. Although transformer can model global dependencies, its computational complexity and memory consumption are quadratic, which significantly limits its ability to process high-resolution depth maps. In this paper, we propose a multi-scale fusion U-shaped Mamba (MSF-UM) model, a novel guided depth map super-resolution framework. The core innovation of this model is to integrate Mamba's efficient state-space modeling capabilities into a multi-scale U-shaped fusion structure guided by a color image. The structure combining the residual dense channel attention block and the Mamba state space module is designed, which combines the local feature extraction capability of the convolutional layer with the modeling advantage of the state space model for long-distance dependencies. At the same time, the model adopts a multi-scale cross-modal fusion strategy to make full use of the high-frequency texture information from the color image to guide the super-resolution process of the depth map. Compared with existing mainstream methods, the proposed MSF-UM significantly reduces the number of model parameters while achieving better reconstruction accuracy. Extensive experiments on multiple publicly available datasets validate the effectiveness of the model, especially showing excellent generalization ability in the task of large-scale depth map super-resolution.
Abstract:Depth estimation based on stereo matching is a classic but popular computer vision problem, which has a wide range of real-world applications. Current stereo matching methods generally adopt the deep Siamese neural network architecture, and have achieved impressing performance by constructing feature matching cost volumes and using 3D convolutions for cost aggregation. However, most existing methods suffer from large number of parameters and slow running time due to the sequential use of 3D convolutions. In this paper, we propose Ghost-Stereo, a novel end-to-end stereo matching network. The feature extraction part of the network uses the GhostNet to form a U-shaped structure. The core of Ghost-Stereo is a GhostNet feature-based cost volume enhancement (Ghost-CVE) module and a GhostNet-inspired lightweight cost volume aggregation (Ghost-CVA) module. For the Ghost-CVE part, cost volumes are constructed and fused by the GhostNet-based features to enhance the spatial context awareness. For the Ghost-CVA part, a lightweight 3D convolution bottleneck block based on the GhostNet is proposed to reduce the computational complexity in this module. By combining with the context and geometry fusion module, a classical hourglass-shaped cost volume aggregate structure is constructed. Ghost-Stereo achieves a comparable performance than state-of-the-art real-time methods on several publicly benchmarks, and shows a better generalization ability.
Abstract:Prompt treatment for melanoma is crucial. To assist physicians in identifying lesion areas precisely in a quick manner, we propose a novel skin lesion segmentation technique namely SLP-Net, an ultra-lightweight segmentation network based on the spiking neural P(SNP) systems type mechanism. Most existing convolutional neural networks achieve high segmentation accuracy while neglecting the high hardware cost. SLP-Net, on the contrary, has a very small number of parameters and a high computation speed. We design a lightweight multi-scale feature extractor without the usual encoder-decoder structure. Rather than a decoder, a feature adaptation module is designed to replace it and implement multi-scale information decoding. Experiments at the ISIC2018 challenge demonstrate that the proposed model has the highest Acc and DSC among the state-of-the-art methods, while experiments on the PH2 dataset also demonstrate a favorable generalization ability. Finally, we compare the computational complexity as well as the computational speed of the models in experiments, where SLP-Net has the highest overall superiority