Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.




The innovation of the study is that the deep learning method and sentiment analysis are integrated in traditional business model analysis and forecasting, and the research subject is TSMC for industry trend prediction of semiconductor industry in Taiwan. For the rapid market changes and development of wafer technologies of semiconductor industry, traditional data analysis methods not perform well in the high variety and time series data. Textual data and time series data were collected from seasonal reports of TSMC including financial information. Textual data through sentiment analysis by considering the event intervention both from internal events of the company and the external global events. Using the sentiment-enhanced time series data, the LSTM model was adopted for predicting industry trend of TSMC. The prediction results reveal significant development of wafer technology of TSMC and the potential threatens in the global market, and matches the product released news of TSMC and the international news. The contribution of the work performed accurately in industry trend prediction of the semiconductor industry by considering both the internal and external event intervention, and the prediction results provide valuable information of semiconductor industry both in research and business aspects.
Online social media platforms enable influencers to distribute content and quickly capture audience reactions, significantly shaping their promotional strategies and advertising agreements. Understanding how sentiment dynamics and emotional contagion unfold among followers is vital for influencers and marketers, as these processes shape engagement, brand perception, and purchasing behavior. While sentiment analysis tools effectively track sentiment fluctuations, dynamical models explaining their evolution remain limited, often neglecting network structures and interactions both among blogs and between their topic-focused follower groups. In this study, we tracked influential tech-focused Weibo bloggers over six months, quantifying follower sentiment from text-mined feedback. By treating each blogger's audience as a single "macro-agent", we find that sentiment trajectories follow the principle of iterative averaging -- a foundational mechanism in many dynamical models of opinion formation, a theoretical framework at the intersection of social network analysis and dynamical systems theory. The sentiment evolution aligns closely with opinion-dynamics models, particularly modified versions of the classical French-DeGroot model that incorporate delayed perception and distinguish between expressed and private opinions. The inferred influence structures reveal interdependencies among blogs that may arise from homophily, whereby emotionally similar users subscribe to the same blogs and collectively shape the shared sentiment expressed within these communities.
Multimodal Sentiment Analysis (MSA) aims to predict sentiment from language, acoustic, and visual data in videos. However, imbalanced unimodal performance often leads to suboptimal fused representations. Existing approaches typically adopt fixed primary modality strategies to maximize dominant modality advantages, yet fail to adapt to dynamic variations in modality importance across different samples. Moreover, non-language modalities suffer from sequential redundancy and noise, degrading model performance when they serve as primary inputs. To address these issues, this paper proposes a modality optimization and dynamic primary modality selection framework (MODS). First, a Graph-based Dynamic Sequence Compressor (GDC) is constructed, which employs capsule networks and graph convolution to reduce sequential redundancy in acoustic/visual modalities. Then, we develop a sample-adaptive Primary Modality Selector (MSelector) for dynamic dominance determination. Finally, a Primary-modality-Centric Cross-Attention (PCCA) module is designed to enhance dominant modalities while facilitating cross-modal interaction. Extensive experiments on four benchmark datasets demonstrate that MODS outperforms state-of-the-art methods, achieving superior performance by effectively balancing modality contributions and eliminating redundant noise.




Story understanding and analysis have long been challenging areas within Natural Language Understanding. Automated narrative analysis requires deep computational semantic representations along with syntactic processing. Moreover, the large volume of narrative data demands automated semantic analysis and computational learning rather than manual analytical approaches. In this paper, we propose a framework that analyzes the sentiment arcs of movie scripts and performs extended analysis related to the context of the characters involved. The framework enables the extraction of high-level and low-level concepts conveyed through the narrative. Using dictionary-based sentiment analysis, our approach applies a custom lexicon built with the LabMTsimple storylab module. The custom lexicon is based on the Valence, Arousal, and Dominance scores from the NRC-VAD dataset. Furthermore, the framework advances the analysis by clustering similar sentiment plots using Wards hierarchical clustering technique. Experimental evaluation on a movie dataset shows that the resulting analysis is helpful to consumers and readers when selecting a narrative or story.




Understanding customer attitudes has become a critical component of decision-making due to the growing influence of social media and e-commerce. Text-based opinions are the most structured, hence playing an important role in sentiment analysis. Most of the existing methods, which include lexicon-based approaches and traditional machine learning techniques, are insufficient for handling contextual nuances and scalability. While the latter has limitations in model performance and generalization, deep learning (DL) has achieved improvement, especially on semantic relationship capturing with recurrent neural networks (RNNs) and convolutional neural networks (CNNs). The aim of the study is to enhance opinion mining by introducing a hybrid deep neural network model that combines a bidirectional gated recurrent unit (BGRU) and long short-term memory (LSTM) layers to improve sentiment analysis, particularly addressing challenges such as contextual nuance, scalability, and class imbalance. To substantiate the efficacy of the proposed model, we conducted comprehensive experiments utilizing benchmark datasets, encompassing IMDB movie critiques and Amazon product evaluations. The introduced hybrid BGRULSTM (HBGRU-LSTM) architecture attained a testing accuracy of 95%, exceeding the performance of traditional DL frameworks such as LSTM (93.06%), CNN+LSTM (93.31%), and GRU+LSTM (92.20%). Moreover, our model exhibited a noteworthy enhancement in recall for negative sentiments, escalating from 86% (unbalanced dataset) to 96% (balanced dataset), thereby ensuring a more equitable and just sentiment classification. Furthermore, the model diminished misclassification loss from 20.24% for unbalanced to 13.3% for balanced dataset, signifying enhanced generalization and resilience.




The rapid evolution of the gaming industry, driven by technological advancements and a burgeoning community, necessitates a deeper understanding of user sentiments, especially as expressed on popular social media platforms like YouTube. This study presents a sentiment analysis on video games based on YouTube comments, aiming to understand user sentiments within the gaming community. Utilizing YouTube API, comments related to various video games were collected and analyzed using the TextBlob sentiment analysis tool. The pre-processed data underwent classification using machine learning algorithms, including Naïve Bayes, Logistic Regression, and Support Vector Machine (SVM). Among these, SVM demonstrated superior performance, achieving the highest classification accuracy across different datasets. The analysis spanned multiple popular gaming videos, revealing trends and insights into user preferences and critiques. The findings underscore the importance of advanced sentiment analysis in capturing the nuanced emotions expressed in user comments, providing valuable feedback for game developers to enhance game design and user experience. Future research will focus on integrating more sophisticated natural language processing techniques and exploring additional data sources to further refine sentiment analysis in the gaming domain.




Sentiments about the reproducibility of cited papers in downstream literature offer community perspectives and have shown as a promising signal of the actual reproducibility of published findings. To train effective models to effectively predict reproducibility-oriented sentiments and further systematically study their correlation with reproducibility, we introduce the CC30k dataset, comprising a total of 30,734 citation contexts in machine learning papers. Each citation context is labeled with one of three reproducibility-oriented sentiment labels: Positive, Negative, or Neutral, reflecting the cited paper's perceived reproducibility or replicability. Of these, 25,829 are labeled through crowdsourcing, supplemented with negatives generated through a controlled pipeline to counter the scarcity of negative labels. Unlike traditional sentiment analysis datasets, CC30k focuses on reproducibility-oriented sentiments, addressing a research gap in resources for computational reproducibility studies. The dataset was created through a pipeline that includes robust data cleansing, careful crowd selection, and thorough validation. The resulting dataset achieves a labeling accuracy of 94%. We then demonstrated that the performance of three large language models significantly improves on the reproducibility-oriented sentiment classification after fine-tuning using our dataset. The dataset lays the foundation for large-scale assessments of the reproducibility of machine learning papers. The CC30k dataset and the Jupyter notebooks used to produce and analyze the dataset are publicly available at https://github.com/lamps-lab/CC30k .
WordNet offers rich supersense hierarchies for nouns and verbs, yet adverbs remain underdeveloped, lacking a systematic semantic classification. We introduce a linguistically grounded supersense typology for adverbs, empirically validated through annotation, that captures major semantic domains including manner, temporal, frequency, degree, domain, speaker-oriented, and subject-oriented functions. Results from a pilot annotation study demonstrate that these categories provide broad coverage of adverbs in natural text and can be reliably assigned by human annotators. Incorporating this typology extends WordNet's coverage, aligns it more closely with linguistic theory, and facilitates downstream NLP applications such as word sense disambiguation, event extraction, sentiment analysis, and discourse modeling. We present the proposed supersense categories, annotation outcomes, and directions for future work.
Mobile devices increasingly require the parallel execution of several computing tasks offloaded at the wireless edge. Existing communication systems only support parallel transmissions at the bit level, which fundamentally limits the number of tasks that can be concurrently processed. To address this bottleneck, this paper introduces the new concept of Semantic Multiplexing. Our approach shifts stream multiplexing from bits to tasks by merging multiple task-related compressed representations into a single semantic representation. As such, Semantic Multiplexing can multiplex more tasks than the number of physical channels without adding antennas or widening bandwidth by extending the effective degrees of freedom at the semantic layer, without contradicting Shannon capacity rules. We have prototyped Semantic Multiplexing on an experimental testbed with Jetson Orin Nano and millimeter-wave software-defined radios and tested its performance on image classification and sentiment analysis while comparing to several existing baselines in semantic communications. Our experiments demonstrate that Semantic Multiplexing allows jointly processing multiple tasks at the semantic level while maintaining sufficient task accuracy. For example, image classification accuracy drops by less than 4% when increasing from 2 to 8 the number of tasks multiplexed over a 4$\times$4 channel. Semantic Multiplexing reduces latency, energy consumption, and communication load respectively by up to 8$\times$, 25$\times$, and 54$\times$ compared to the baselines while keeping comparable performance. We pledge to publicly share the complete software codebase and the collected datasets for reproducibility.
Audio classification plays an essential role in sentiment analysis and emotion recognition, especially for analyzing customer attitudes in marketing phone calls. Efficiently categorizing customer purchasing propensity from large volumes of audio data remains challenging. In this work, we propose a novel Multi-Segment Multi-Task Fusion Network (MSMT-FN) that is uniquely designed for addressing this business demand. Evaluations conducted on our proprietary MarketCalls dataset, as well as established benchmarks (CMU-MOSI, CMU-MOSEI, and MELD), show MSMT-FN consistently outperforms or matches state-of-the-art methods. Additionally, our newly curated MarketCalls dataset will be available upon request, and the code base is made accessible at GitHub Repository MSMT-FN, to facilitate further research and advancements in audio classification domain.