Abstract:Multimodal large language models (MLLMs) have demonstrated strong performance on vision-language tasks, yet their effectiveness on multimodal sentiment analysis remains constrained by the scarcity of high-quality training data, which limits accurate multimodal understanding and generalization. To alleviate this bottleneck, we leverage diffusion models to perform semantics-preserving augmentation on the video and audio modalities, expanding the multimodal training distribution. However, increasing data quantity alone is insufficient, as diffusion-generated samples exhibit substantial quality variation and noisy augmentations may degrade performance. We therefore propose DaQ-MSA (Denoising and Qualifying Diffusion Augmentations for Multimodal Sentiment Analysis), which introduces a quality scoring module to evaluate the reliability of augmented samples and assign adaptive training weights. By down-weighting low-quality samples and emphasizing high-fidelity ones, DaQ-MSA enables more stable learning. By integrating the generative capability of diffusion models with the semantic understanding of MLLMs, our approach provides a robust and generalizable automated augmentation strategy for training MLLMs without any human annotation or additional supervision.




Abstract:Multimodal sentiment analysis (MSA) aims to understand human emotions by integrating information from multiple modalities, such as text, audio, and visual data. However, existing methods often suffer from spurious correlations both within and across modalities, leading models to rely on statistical shortcuts rather than true causal relationships, thereby undermining generalization. To mitigate this issue, we propose a Multi-relational Multimodal Causal Intervention (MMCI) model, which leverages the backdoor adjustment from causal theory to address the confounding effects of such shortcuts. Specifically, we first model the multimodal inputs as a multi-relational graph to explicitly capture intra- and inter-modal dependencies. Then, we apply an attention mechanism to separately estimate and disentangle the causal features and shortcut features corresponding to these intra- and inter-modal relations. Finally, by applying the backdoor adjustment, we stratify the shortcut features and dynamically combine them with the causal features to encourage MMCI to produce stable predictions under distribution shifts. Extensive experiments on several standard MSA datasets and out-of-distribution (OOD) test sets demonstrate that our method effectively suppresses biases and improves performance.