Abstract:Current conversational AI systems often provide generic, one-size-fits-all interactions that overlook individual user characteristics and lack adaptive dialogue management. To address this gap, we introduce \textbf{HumAIne-chatbot}, an AI-driven conversational agent that personalizes responses through a novel user profiling framework. The system is pre-trained on a diverse set of GPT-generated virtual personas to establish a broad prior over user types. During live interactions, an online reinforcement learning agent refines per-user models by combining implicit signals (e.g. typing speed, sentiment, engagement duration) with explicit feedback (e.g., likes and dislikes). This profile dynamically informs the chatbot dialogue policy, enabling real-time adaptation of both content and style. To evaluate the system, we performed controlled experiments with 50 synthetic personas in multiple conversation domains. The results showed consistent improvements in user satisfaction, personalization accuracy, and task achievement when personalization features were enabled. Statistical analysis confirmed significant differences between personalized and nonpersonalized conditions, with large effect sizes across key metrics. These findings highlight the effectiveness of AI-driven user profiling and provide a strong foundation for future real-world validation.
Abstract:The field of Explainable Artificial Intelligence (XAI) often focuses on users with a strong technical background, making it challenging for non-experts to understand XAI methods. This paper presents "x-[plAIn]", a new approach to make XAI more accessible to a wider audience through a custom Large Language Model (LLM), developed using ChatGPT Builder. Our goal was to design a model that can generate clear, concise summaries of various XAI methods, tailored for different audiences, including business professionals and academics. The key feature of our model is its ability to adapt explanations to match each audience group's knowledge level and interests. Our approach still offers timely insights, facilitating the decision-making process by the end users. Results from our use-case studies show that our model is effective in providing easy-to-understand, audience-specific explanations, regardless of the XAI method used. This adaptability improves the accessibility of XAI, bridging the gap between complex AI technologies and their practical applications. Our findings indicate a promising direction for LLMs in making advanced AI concepts more accessible to a diverse range of users.