Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Market generators using deep generative models have shown promise for synthetic financial data generation, but existing approaches lack causal reasoning capabilities essential for counterfactual analysis and risk assessment. We propose a Time-series Neural Causal Model VAE (TNCM-VAE) that combines variational autoencoders with structural causal models to generate counterfactual financial time series while preserving both temporal dependencies and causal relationships. Our approach enforces causal constraints through directed acyclic graphs in the decoder architecture and employs the causal Wasserstein distance for training. We validate our method on synthetic autoregressive models inspired by the Ornstein-Uhlenbeck process, demonstrating superior performance in counterfactual probability estimation with L1 distances as low as 0.03-0.10 compared to ground truth. The model enables financial stress testing, scenario analysis, and enhanced backtesting by generating plausible counterfactual market trajectories that respect underlying causal mechanisms.
Early detection of faults in district heating substations is imperative to reduce return temperatures and enhance efficiency. However, progress in this domain has been hindered by the limited availability of public, labelled datasets. We present an open source framework combining a service report validated public dataset, an evaluation method based on Accuracy, Reliability, and Earliness, and baseline results implemented with EnergyFaultDetector, an open source Python framework. The dataset contains time series of operational data from 93 substations across two manufacturers, annotated with a list of disturbances due to faults and maintenance actions, a set of normal-event examples and detailed fault metadata. We evaluate the EnergyFaultDetector using three metrics: Accuracy for recognising normal behaviour, an eventwise F Score for reliable fault detection with few false alarms, and Earliness for early detection. The framework also supports root cause analysis using ARCANA. We demonstrate three use cases to assist operators in interpreting anomalies and identifying underlying faults. The models achieve high normal-behaviour accuracy (0.98) and eventwise F-score (beta=0.5) of 0.83, detecting 60% of the faults in the dataset before the customer reports a problem, with an average lead time of 3.9 days. Integrating an open dataset, metrics, open source code, and baselines establishes a reproducible, fault centric benchmark with operationally meaningful evaluation, enabling consistent comparison and development of early fault detection and diagnosis methods for district heating substations.
Multivariate time series data come as a collection of time series describing different aspects of a certain temporal phenomenon. Anomaly detection in this type of data constitutes a challenging problem yet with numerous applications in science and engineering because anomaly scores come from the simultaneous consideration of the temporal and variable relationships. In this paper, we propose a clustering-based approach to detect anomalies concerning the amplitude and the shape of multivariate time series. First, we use a sliding window to generate a set of multivariate subsequences and thereafter apply an extended fuzzy clustering to reveal a structure present within the generated multivariate subsequences. Finally, a reconstruction criterion is employed to reconstruct the multivariate subsequences with the optimal cluster centers and the partition matrix. We construct a confidence index to quantify a level of anomaly detected in the series and apply Particle Swarm Optimization as an optimization vehicle for the problem of anomaly detection. Experimental studies completed on several synthetic and six real-world datasets suggest that the proposed methods can detect the anomalies in multivariate time series. With the help of available clusters revealed by the extended fuzzy clustering, the proposed framework can detect anomalies in the multivariate time series and is suitable for identifying anomalous amplitude and shape patterns in various application domains such as health care, weather data analysis, finance, and disease outbreak detection.
Time series forecasting relies on predicting future values from historical data, yet most state-of-the-art approaches-including transformer and multilayer perceptron-based models-optimize using Mean Squared Error (MSE), which has two fundamental weaknesses: its point-wise error computation fails to capture temporal relationships, and it does not account for inherent noise in the data. To overcome these limitations, we introduce the Residual-Informed Loss (RI-Loss), a novel objective function based on the Hilbert-Schmidt Independence Criterion (HSIC). RI-Loss explicitly models noise structure by enforcing dependence between the residual sequence and a random time series, enabling more robust, noise-aware representations. Theoretically, we derive the first non-asymptotic HSIC bound with explicit double-sample complexity terms, achieving optimal convergence rates through Bernstein-type concentration inequalities and Rademacher complexity analysis. This provides rigorous guarantees for RI-Loss optimization while precisely quantifying kernel space interactions. Empirically, experiments across eight real-world benchmarks and five leading forecasting models demonstrate improvements in predictive performance, validating the effectiveness of our approach. Code will be made publicly available to ensure reproducibility.
This study addresses the problem of dynamic anomaly detection in accounting transactions and proposes a real-time detection method based on a Transformer to tackle the challenges of hidden abnormal behaviors and high timeliness requirements in complex trading environments. The approach first models accounting transaction data by representing multi-dimensional records as time-series matrices and uses embedding layers and positional encoding to achieve low-dimensional mapping of inputs. A sequence modeling structure with multi-head self-attention is then constructed to capture global dependencies and aggregate features from multiple perspectives, thereby enhancing the ability to detect abnormal patterns. The network further integrates feed-forward layers and regularization strategies to achieve deep feature representation and accurate anomaly probability estimation. To validate the effectiveness of the method, extensive experiments were conducted on a public dataset, including comparative analysis, hyperparameter sensitivity tests, environmental sensitivity tests, and data sensitivity tests. Results show that the proposed method outperforms baseline models in AUC, F1-Score, Precision, and Recall, and maintains stable performance under different environmental conditions and data perturbations. These findings confirm the applicability and advantages of the Transformer-based framework for dynamic anomaly detection in accounting transactions and provide methodological support for intelligent financial risk control and auditing.
This paper presents a bibliometric analysis of the field of short-term passenger flow forecasting within local public transit, covering 814 publications that span from 1984 to 2024. In addition to common bibliometric analysis tools, a variant of a citation network was developed, and topic modelling was conducted. The analysis reveals that research activity exhibited sporadic patterns prior to 2008, followed by a marked acceleration, characterised by a shift from conventional statistical and machine learning methodologies (e.g., ARIMA, SVM, and basic neural networks) to specialised deep learning architectures. Based on this insight, a connection to more general fields such as machine learning and time series modelling was established. In addition to modelling, spatial, linguistic, and modal biases were identified and findings from existing secondary literature were validated and quantified. This revealed existing gaps, such as constrained data fusion, open (multivariate) data, and underappreciated challenges related to model interpretability, cost-efficiency, and a balance between algorithmic performance and practical deployment considerations. In connection with the superordinate fields, the growth in relevance of foundation models is also noteworthy.




Recent advances have investigated the use of pretrained large language models (LLMs) for time-series forecasting by aligning numerical inputs with LLM embedding spaces. However, existing multimodal approaches often overlook the distinct statistical properties and temporal dependencies that are fundamental to time-series data. To bridge this gap, we propose MAP4TS, a novel Multi-Aspect Prompting Framework that explicitly incorporates classical time-series analysis into the prompt design. Our framework introduces four specialized prompt components: a Global Domain Prompt that conveys dataset-level context, a Local Domain Prompt that encodes recent trends and series-specific behaviors, and a pair of Statistical and Temporal Prompts that embed handcrafted insights derived from autocorrelation (ACF), partial autocorrelation (PACF), and Fourier analysis. Multi-Aspect Prompts are combined with raw time-series embeddings and passed through a cross-modality alignment module to produce unified representations, which are then processed by an LLM and projected for final forecasting. Extensive experiments across eight diverse datasets show that MAP4TS consistently outperforms state-of-the-art LLM-based methods. Our ablation studies further reveal that prompt-aware designs significantly enhance performance stability and that GPT-2 backbones, when paired with structured prompts, outperform larger models like LLaMA in long-term forecasting tasks.




Agentic AI systems and Physical or Embodied AI systems have been two key research verticals at the forefront of Artificial Intelligence and Robotics, with Model Context Protocol (MCP) increasingly becoming a key component and enabler of agentic applications. However, the literature at the intersection of these verticals, i.e., Agentic Embodied AI, remains scarce. This paper introduces an MCP server for analyzing ROS and ROS 2 bags, allowing for analyzing, visualizing and processing robot data with natural language through LLMs and VLMs. We describe specific tooling built with robotics domain knowledge, with our initial release focused on mobile robotics and supporting natively the analysis of trajectories, laser scan data, transforms, or time series data. This is in addition to providing an interface to standard ROS 2 CLI tools ("ros2 bag list" or "ros2 bag info"), as well as the ability to filter bags with a subset of topics or trimmed in time. Coupled with the MCP server, we provide a lightweight UI that allows the benchmarking of the tooling with different LLMs, both proprietary (Anthropic, OpenAI) and open-source (through Groq). Our experimental results include the analysis of tool calling capabilities of eight different state-of-the-art LLM/VLM models, both proprietary and open-source, large and small. Our experiments indicate that there is a large divide in tool calling capabilities, with Kimi K2 and Claude Sonnet 4 demonstrating clearly superior performance. We also conclude that there are multiple factors affecting the success rates, from the tool description schema to the number of arguments, as well as the number of tools available to the models. The code is available with a permissive license at https://github.com/binabik-ai/mcp-rosbags.




Pre-trained Time Series Foundational Models (TSFMs) represent a significant advance, capable of forecasting diverse time series with complex characteristics, including varied seasonalities, trends, and long-range dependencies. Despite their primary goal of universal time series forecasting, their efficacy is far from uniform; divergent training protocols and data sources cause individual TSFMs to exhibit highly variable performance across different forecasting tasks, domains, and horizons. Leveraging this complementary expertise by arbitrating existing TSFM outputs presents a compelling strategy, yet this remains a largely unexplored area of research. In this paper, we conduct a thorough examination of how different TSFMs exhibit specialized performance profiles across various forecasting settings, and how we can effectively leverage this behavior in arbitration between different time series models. We specifically analyze how factors such as model selection and forecast horizon distribution can influence the efficacy of arbitration strategies. Based on this analysis, we propose Synapse, a novel arbitration framework for TSFMs. Synapse is designed to dynamically leverage a pool of TSFMs, assign and adjust predictive weights based on their relative, context-dependent performance, and construct a robust forecast distribution by adaptively sampling from the output quantiles of constituent models. Experimental results demonstrate that Synapse consistently outperforms other popular ensembling techniques as well as individual TSFMs, demonstrating Synapse's efficacy in time series forecasting.
Diagnosing the root causes of Quality of Experience (QoE) degradations in operational mobile networks is challenging due to complex cross-layer interactions among kernel performance indicators (KPIs) and the scarcity of reliable expert annotations. Although rule-based heuristics can generate labels at scale, they are noisy and coarse-grained, limiting the accuracy of purely data-driven approaches. To address this, we propose DK-Root, a joint data-and-knowledge-driven framework that unifies scalable weak supervision with precise expert guidance for robust root-cause analysis. DK-Root first pretrains an encoder via contrastive representation learning using abundant rule-based labels while explicitly denoising their noise through a supervised contrastive objective. To supply task-faithful data augmentation, we introduce a class-conditional diffusion model that generates KPIs sequences preserving root-cause semantics, and by controlling reverse diffusion steps, it produces weak and strong augmentations that improve intra-class compactness and inter-class separability. Finally, the encoder and the lightweight classifier are jointly fine-tuned with scarce expert-verified labels to sharpen decision boundaries. Extensive experiments on a real-world, operator-grade dataset demonstrate state-of-the-art accuracy, with DK-Root surpassing traditional ML and recent semi-supervised time-series methods. Ablations confirm the necessity of the conditional diffusion augmentation and the pretrain-finetune design, validating both representation quality and classification gains.