Carnegie Mellon University, Auton Lab, The Robotics Institute, Pittsburgh, USA
Abstract:In trauma and critical care settings, rapid and precise intravascular access is key to patients' survival. Our research aims at ensuring this access, even when skilled medical personnel are not readily available. Vessel bifurcations are anatomical landmarks that can guide the safe placement of catheters or needles during medical procedures. Although ultrasound is advantageous in navigating anatomical landmarks in emergency scenarios due to its portability and safety, to our knowledge no existing algorithm can autonomously extract vessel bifurcations using ultrasound images. This is primarily due to the limited availability of ground truth data, in particular, data from live subjects, needed for training and validating reliable models. Researchers often resort to using data from anatomical phantoms or simulations. We introduce BIFURC, Bifurcation Identification for Ultrasound-driven Robot Cannulation, a novel algorithm that identifies vessel bifurcations and provides optimal needle insertion sites for an autonomous robotic cannulation system. BIFURC integrates expert knowledge with deep learning techniques to efficiently detect vessel bifurcations within the femoral region and can be trained on a limited amount of in-vivo data. We evaluated our algorithm using a medical phantom as well as real-world experiments involving live pigs. In all cases, BIFURC consistently identified bifurcation points and needle insertion locations in alignment with those identified by expert clinicians.
Abstract:Recent advancements in machine learning have accelerated its widespread adoption across various real-world applications. However, in safety-critical domains, the deployment of machine learning models is riddled with challenges due to their complexity, lack of interpretability, and absence of formal guarantees regarding their behavior. In this paper, we introduce a verification framework tailored for Bayesian networks, designed to address these drawbacks. Our framework comprises two key components: (1) a two-step compilation and encoding scheme that translates Bayesian networks into Boolean logic literals, and (2) formal verification queries that leverage these literals to verify various properties encoded as constraints. Specifically, we introduce two verification queries: if-then rules (ITR) and feature monotonicity (FMO). We benchmark the efficiency of our verification scheme and demonstrate its practical utility in real-world scenarios.
Abstract:Efficient intravascular access in trauma and critical care significantly impacts patient outcomes. However, the availability of skilled medical personnel in austere environments is often limited. Autonomous robotic ultrasound systems can aid in needle insertion for medication delivery and support non-experts in such tasks. Despite advances in autonomous needle insertion, inaccuracies in vessel segmentation predictions pose risks. Understanding the uncertainty of predictive models in ultrasound imaging is crucial for assessing their reliability. We introduce MSU-Net, a novel multistage approach for training an ensemble of U-Nets to yield accurate ultrasound image segmentation maps. We demonstrate substantial improvements, 18.1% over a single Monte Carlo U-Net, enhancing uncertainty evaluations, model transparency, and trustworthiness. By highlighting areas of model certainty, MSU-Net can guide safe needle insertions, empowering non-experts to accomplish such tasks.
Abstract:In supervised learning, understanding an input's proximity to the training data can help a model decide whether it has sufficient evidence for reaching a reliable prediction. While powerful probabilistic models such as Gaussian Processes naturally have this property, deep neural networks often lack it. In this paper, we introduce Distance Aware Bottleneck (DAB), i.e., a new method for enriching deep neural networks with this property. Building on prior information bottleneck approaches, our method learns a codebook that stores a compressed representation of all inputs seen during training. The distance of a new example from this codebook can serve as an uncertainty estimate for the example. The resulting model is simple to train and provides deterministic uncertainty estimates by a single forward pass. Finally, our method achieves better out-of-distribution (OOD) detection and misclassification prediction than prior methods, including expensive ensemble methods, deep kernel Gaussian Processes, and approaches based on the standard information bottleneck.
Abstract:In the real world, data is often noisy, affecting not only the quality of features but also the accuracy of labels. Current research on mitigating label errors stems primarily from advances in deep learning, and a gap exists in exploring interpretable models, particularly those rooted in decision trees. In this study, we investigate whether ideas from deep learning loss design can be applied to improve the robustness of decision trees. In particular, we show that loss correction and symmetric losses, both standard approaches, are not effective. We argue that other directions need to be explored to improve the robustness of decision trees to label noise.
Abstract:We introduce MOMENT, a family of open-source foundation models for general-purpose time-series analysis. Pre-training large models on time-series data is challenging due to (1) the absence of a large and cohesive public time-series repository, and (2) diverse time-series characteristics which make multi-dataset training onerous. Additionally, (3) experimental benchmarks to evaluate these models, especially in scenarios with limited resources, time, and supervision, are still in their nascent stages. To address these challenges, we compile a large and diverse collection of public time-series, called the Time-series Pile, and systematically tackle time-series-specific challenges to unlock large-scale multi-dataset pre-training. Finally, we build on recent work to design a benchmark to evaluate time-series foundation models on diverse tasks and datasets in limited supervision settings. Experiments on this benchmark demonstrate the effectiveness of our pre-trained models with minimal data and task-specific fine-tuning. Finally, we present several interesting empirical observations about large pre-trained time-series models. Our code is available anonymously at anonymous.4open.science/r/BETT-773F/.
Abstract:Signal quality assessment (SQA) is required for monitoring the reliability of data acquisition systems, especially in AI-driven Predictive Maintenance (PMx) application contexts. SQA is vital for addressing "silent failures" of data acquisition hardware and software, which when unnoticed, misinform the users of data, creating the risk for incorrect decisions with unintended or even catastrophic consequences. We have developed an open-source software implementation of signal quality indices (SQIs) for the analysis of time-series data. We codify a range of SQIs, demonstrate them using established benchmark data, and show that they can be effective for signal quality assessment. We also study alternative approaches to denoising time-series data in an attempt to improve the quality of the already degraded signal, and evaluate them empirically on relevant real-world data. To our knowledge, our software toolkit is the first to provide an open source implementation of a broad range of signal quality assessment and improvement techniques validated on publicly available benchmark data for ease of reproducibility. The generality of our framework can be easily extended to assessing reliability of arbitrary time-series measurements in complex systems, especially when morphological patterns of the waveform shapes and signal periodicity are of key interest in downstream analyses.
Abstract:Segmenting a moving needle in ultrasound images is challenging due to the presence of artifacts, noise, and needle occlusion. This task becomes even more demanding in scenarios where data availability is limited. Convolutional Neural Networks (CNNs) have been successful in many computer vision applications, but struggle to accurately segment needles without considering their motion. In this paper, we present a novel approach for needle segmentation that combines classical Kalman Filter (KF) techniques with data-driven learning, incorporating both needle features and needle motion. Our method offers two key contributions. First, we propose a compatible framework that seamlessly integrates into commonly used encoder-decoder style architectures. Second, we demonstrate superior performance compared to recent state-of-the-art needle segmentation models using our novel convolutional neural network (CNN) based KF-inspired block, achieving a 15\% reduction in pixel-wise needle tip error and an 8\% reduction in length error. Third, to our knowledge we are the first to implement a learnable filter to incorporate non-linear needle motion for improving needle segmentation.
Abstract:Forecasting healthcare time series is crucial for early detection of adverse outcomes and for patient monitoring. Forecasting, however, can be difficult in practice due to noisy and intermittent data. The challenges are often exacerbated by change points induced via extrinsic factors, such as the administration of medication. We propose a novel encoder that informs deep learning models of the pharmacokinetic effects of drugs to allow for accurate forecasting of time series affected by treatment. We showcase the effectiveness of our approach in a task to forecast blood glucose using both realistically simulated and real-world data. Our pharmacokinetic encoder helps deep learning models surpass baselines by approximately 11% on simulated data and 8% on real-world data. The proposed approach can have multiple beneficial applications in clinical practice, such as issuing early warnings about unexpected treatment responses, or helping to characterize patient-specific treatment effects in terms of drug absorption and elimination characteristics.
Abstract:Machine learning (ML) models are only as good as the data they are trained on. But recent studies have found datasets widely used to train and evaluate ML models, e.g. ImageNet, to have pervasive labeling errors. Erroneous labels on the train set hurt ML models' ability to generalize, and they impact evaluation and model selection using the test set. Consequently, learning in the presence of labeling errors is an active area of research, yet this field lacks a comprehensive benchmark to evaluate these methods. Most of these methods are evaluated on a few computer vision datasets with significant variance in the experimental protocols. With such a large pool of methods and inconsistent evaluation, it is also unclear how ML practitioners can choose the right models to assess label quality in their data. To this end, we propose a benchmarking environment AQuA to rigorously evaluate methods that enable machine learning in the presence of label noise. We also introduce a design space to delineate concrete design choices of label error detection models. We hope that our proposed design space and benchmark enable practitioners to choose the right tools to improve their label quality and that our benchmark enables objective and rigorous evaluation of machine learning tools facing mislabeled data.