Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
The quality of answers generated by large language models (LLMs) in retrieval-augmented generation (RAG) is largely influenced by the contextual information contained in the retrieved documents. A key challenge for improving RAG is to predict both the utility of retrieved documents -- quantified as the performance gain from using context over generation without context -- and the quality of the final answers in terms of correctness and relevance. In this paper, we define two prediction tasks within RAG. The first is retrieval performance prediction (RPP), which estimates the utility of retrieved documents. The second is generation performance prediction (GPP), which estimates the final answer quality. We hypothesise that in RAG, the topical relevance of retrieved documents correlates with their utility, suggesting that query performance prediction (QPP) approaches can be adapted for RPP and GPP. Beyond these retriever-centric signals, we argue that reader-centric features, such as the LLM's perplexity of the retrieved context conditioned on the input query, can further enhance prediction accuracy for both RPP and GPP. Finally, we propose that features reflecting query-agnostic document quality and readability can also provide useful signals to the predictions. We train linear regression models with the above categories of predictors for both RPP and GPP. Experiments on the Natural Questions (NQ) dataset show that combining predictors from multiple feature categories yields the most accurate estimates of RAG performance.
Open-set learning and discovery (OSLD) is a challenging machine learning task in which samples from new (unknown) classes can appear at test time. It can be seen as a generalization of zero-shot learning, where the new classes are not known a priori, hence involving the active discovery of new classes. While zero-shot learning has been extensively studied in text classification, especially with the emergence of pre-trained language models, open-set learning and discovery is a comparatively new setup for the text domain. To this end, we introduce the first multilingual open-set learning and discovery (MOSLD) benchmark for text categorization by topic, comprising 960K data samples across 12 languages. To construct the benchmark, we (i) rearrange existing datasets and (ii) collect new data samples from the news domain. Moreover, we propose a novel framework for the OSLD task, which integrates multiple stages to continuously discover and learn new classes. We evaluate several language models, including our own, to obtain results that can be used as reference for future work. We release our benchmark at https://github.com/Adriana19Valentina/MOSLD-Bench.
Research waste in biomedical science is driven by redundant studies, incomplete reporting, and the limited scalability of traditional evidence synthesis workflows. We present an AI co-scientist for scalable and transparent knowledge synthesis based on explicit formalization of Population, Intervention, Comparator, Outcome, and Study design (PICOS). The platform integrates relational storage, vector-based semantic retrieval, and a Neo4j knowledge graph. Evaluation was conducted on dementia-sport and non-communicable disease corpora. Automated PICOS compliance and study design classification from titles and abstracts were performed using a Bidirectional Long Short-Term Memory baseline and a transformer-based multi-task classifier fine-tuned from PubMedBERT. Full-text synthesis employed retrieval-augmented generation with hybrid vector and graph retrieval, while BERTopic was used to identify thematic structure, redundancy, and evidence gaps. The transformer model achieved 95.7% accuracy for study design classification with strong agreement against expert annotations, while the Bi-LSTM achieved 87% accuracy for PICOS compliance detection. Retrieval-augmented generation outperformed non-retrieval generation for queries requiring structured constraints, cross-study integration, and graph-based reasoning, whereas non-retrieval approaches remained competitive for high-level summaries. Topic modeling revealed substantial thematic redundancy and identified underexplored research areas. These results demonstrate that PICOS-aware and explainable natural language processing can improve the scalability, transparency, and efficiency of evidence synthesis. The proposed architecture is domain-agnostic and offers a practical framework for reducing research waste across biomedical disciplines.
As the volume of unstructured text continues to grow across domains, there is an urgent need for scalable methods that enable interpretable organization, summarization, and retrieval of information. This work presents a unified framework for interpretable topic modeling, zero-shot topic labeling, and topic-guided semantic retrieval over large agricultural text corpora. Leveraging BERTopic, we extract semantically coherent topics. Each topic is converted into a structured prompt, enabling a language model to generate meaningful topic labels and summaries in a zero-shot manner. Querying and document exploration are supported via dense embeddings and vector search, while a dedicated evaluation module assesses topical coherence and bias. This framework supports scalable and interpretable information access in specialized domains where labeled data is limited.
Open science initiatives have strengthened scientific integrity and accelerated research progress across many fields, but the state of their practice within transportation research remains under-investigated. Key features of open science, defined here as data and code availability, are difficult to extract due to the inherent complexity of the field. Previous work has either been limited to small-scale studies due to the labor-intensive nature of manual analysis or has relied on large-scale bibliometric approaches that sacrifice contextual richness. This paper introduces an automatic and scalable feature-extraction pipeline to measure data and code availability in transportation research. We employ Large Language Models (LLMs) for this task and validate their performance against a manually curated dataset and through an inter-rater agreement analysis. We applied this pipeline to examine 10,724 research articles published in the Transportation Research Part series of journals between 2019 and 2024. Our analysis found that only 5% of quantitative papers shared a code repository, 4% of quantitative papers shared a data repository, and about 3% of papers shared both, with trends differing across journals, topics, and geographic regions. We found no significant difference in citation counts or review duration between papers that provided data and code and those that did not, suggesting a misalignment between open science efforts and traditional academic metrics. Consequently, encouraging these practices will likely require structural interventions from journals and funding agencies to supplement the lack of direct author incentives. The pipeline developed in this study can be readily scaled to other journals, representing a critical step toward the automated measurement and monitoring of open science practices in transportation research.
Axial coding is a commonly used qualitative analysis method that enhances document understanding by organizing sentence-level open codes into broader categories. In this paper, we operationalize axial coding with large language models (LLMs). Extending an ensemble-based open coding approach with an LLM moderator, we add an axial coding step that groups open codes into higher-order categories, transforming raw debate transcripts into concise, hierarchical representations. We compare two strategies: (i) clustering embeddings of code-utterance pairs using density-based and partitioning algorithms followed by LLM labeling, and (ii) direct LLM-based grouping of codes and utterances into categories. We apply our method to Dutch parliamentary debates, converting lengthy transcripts into compact, hierarchically structured codes and categories. We evaluate our method using extrinsic metrics aligned with human-assigned topic labels (ROUGE-L, cosine, BERTScore), and intrinsic metrics describing code groups (coverage, brevity, coherence, novelty, JSD divergence). Our results reveal a trade-off: density-based clustering achieves high coverage and strong cluster alignment, while direct LLM grouping results in higher fine-grained alignment, but lower coverage 20%. Overall, clustering maximizes coverage and structural separation, whereas LLM grouping produces more concise, interpretable, and semantically aligned categories. To support future research, we publicly release the full dataset of utterances and codes, enabling reproducibility and comparative studies.
The increasing prevalence of Large Language Models (LLMs) demands effective safeguards for their operation, particularly concerning their tendency to generate out-of-context responses. A key challenge is accurately detecting when LLMs stray from expected conversational norms, manifesting as topic shifts, factual inaccuracies, or outright hallucinations. Traditional anomaly detection struggles to directly apply within contextual semantics. This paper outlines our experiment in exploring the use of Representation Engineering (RepE) and One-Class Support Vector Machine (OCSVM) to identify subspaces within the internal states of LLMs that represent a specific context. By training OCSVM on in-context examples, we establish a robust boundary within the LLM's hidden state latent space. We evaluate out study with two open source LLMs - Llama and Qwen models in specific contextual domain. Our approach entailed identifying the optimal layers within the LLM's internal state subspaces that strongly associates with the context of interest. Our evaluation results showed promising results in identifying the subspace for a specific context. Aside from being useful in detecting in or out of context conversation threads, this research work contributes to the study of better interpreting LLMs.
Recent Large Language Model (LLM) based AI can exhibit recognizable and measurable personality traits during conversations to improve user experience. However, as human understandings of their personality traits can be affected by their interaction partners' traits, a potential risk is that AI traits may shape and bias users' self-concept of their own traits. To explore the possibility, we conducted a randomized behavioral experiment. Our results indicate that after conversations about personal topics with an LLM-based AI chatbot using GPT-4o default personality traits, users' self-concepts aligned with the AI's measured personality traits. The longer the conversation, the greater the alignment. This alignment led to increased homogeneity in self-concepts among users. We also observed that the degree of self-concept alignment was positively associated with users' conversation enjoyment. Our findings uncover how AI personality traits can shape users' self-concepts through human-AI conversation, highlighting both risks and opportunities. We provide important design implications for developing more responsible and ethical AI systems.
Query expansion is a long-standing technique to mitigate vocabulary mismatch in ad hoc Information Retrieval. Pseudo-relevance feedback methods, such as RM3, estimate an expanded query model from the top-ranked documents, but remain vulnerable to topic drift when early results include noisy or tangential content. Recent approaches instead prompt Large Language Models to generate synthetic expansions or query variants. While effective, these methods risk hallucinations and misalignment with collection-specific terminology. We propose a hybrid alternative that preserves the robustness and interpretability of classical PRF while leveraging LLM semantic judgement. Our method inserts an LLM-based filtering stage prior to RM3 estimation: the LLM judges the documents in the initial top-$k$ ranking, and RM3 is computed only over those accepted as relevant. This simple intervention improves over blind PRF and a strong baseline across several datasets and metrics.
Spoken conversational systems require more than accurate speech generation to have human-like conversations: to feel natural and engaging, they must produce conversational behaviour that adapts dynamically to the context. Current spoken conversational systems, however, rarely allow such customization, limiting their naturalness and usability. In this work, we present the first open, instruction-following full-duplex conversational speech model that can be trained efficiently under typical academic resource constraints. By keeping the audio encoder frozen and finetuning only the language model, our model requires just 2,000 hours of data, without relying on large-scale pretraining or multi-stage optimization. The model can follow explicit instructions to control speaker voice, conversation topic, conversational behaviour (e.g., backchanneling and interruptions), and dialogue initiation. We propose a single-stage training protocol and systematically analyze design choices. Both the model and training code will be released to enable reproducible research on controllable full-duplex speech systems.