Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
LLMs are ubiquitous in modern NLP, and while their applicability extends to texts produced for democratic activities such as online deliberations or large-scale citizen consultations, ethical questions have been raised for their usage as analysis tools. We continue this line of research with two main goals: (a) to develop resources that can help standardize citizen contributions in public forums at the pragmatic level, and make them easier to use in topic modeling and political analysis; (b) to study how well this standardization can reliably be performed by small, open-weights LLMs, i.e. models that can be run locally and transparently with limited resources. Accordingly, we introduce Corpus Clarification as a preprocessing framework for large-scale consultation data that transforms noisy, multi-topic contributions into structured, self-contained argumentative units ready for downstream analysis. We present GDN-CC, a manually-curated dataset of 1,231 contributions to the French Grand Débat National, comprising 2,285 argumentative units annotated for argumentative structure and manually clarified. We then show that finetuned Small Language Models match or outperform LLMs on reproducing these annotations, and measure their usability for an opinion clustering task. We finally release GDN-CC-large, an automatically annotated corpus of 240k contributions, the largest annotated democratic consultation dataset to date.
Topic modeling has extensive applications in text mining and data analysis across various industrial sectors. Although the concept of granularity holds significant value for business applications by providing deeper insights, the capability of topic modeling methods to produce granular topics has not been thoroughly explored. In this context, this paper introduces a framework called TIDE, which primarily provides a novel granular topic modeling method based on large language models (LLMs) as a core feature, along with other useful functionalities for business applications, such as summarizing long documents, topic parenting, and distillation. Through extensive experiments on a variety of public and real-world business datasets, we demonstrate that TIDE's topic modeling approach outperforms modern topic modeling methods, and our auxiliary components provide valuable support for dealing with industrial business scenarios. The TIDE framework is currently undergoing the process of being open sourced.
Cross-lingual topic modeling seeks to uncover coherent and semantically aligned topics across languages - a task central to multilingual understanding. Yet most existing models learn topics in disjoint, language-specific spaces and rely on alignment mechanisms (e.g., bilingual dictionaries) that often fail to capture deep cross-lingual semantics, resulting in loosely connected topic spaces. Moreover, these approaches often overlook the rich semantic signals embedded in multilingual pretrained representations, further limiting their ability to capture fine-grained alignment. We introduce GloCTM (Global Context Space for Cross-Lingual Topic Model), a novel framework that enforces cross-lingual topic alignment through a unified semantic space spanning the entire model pipeline. GloCTM constructs enriched input representations by expanding bag-of-words with cross-lingual lexical neighborhoods, and infers topic proportions using both local and global encoders, with their latent representations aligned through internal regularization. At the output level, the global topic-word distribution, defined over the combined vocabulary, structurally synchronizes topic meanings across languages. To further ground topics in deep semantic space, GloCTM incorporates a Centered Kernel Alignment (CKA) loss that aligns the latent topic space with multilingual contextual embeddings. Experiments across multiple benchmarks demonstrate that GloCTM significantly improves topic coherence and cross-lingual alignment, outperforming strong baselines.
This study investigates the use of neural topic modeling and LLMs to uncover meaningful themes from patient storytelling data, to offer insights that could contribute to more patient-oriented healthcare practices. We analyze a collection of transcribed interviews with cancer patients (132,722 words in 13 interviews). We first evaluate BERTopic and Top2Vec for individual interview summarization by using similar preprocessing, chunking, and clustering configurations to ensure a fair comparison on Keyword Extraction. LLMs (GPT4) are then used for the next step topic labeling. Their outputs for a single interview (I0) are rated through a small-scale human evaluation, focusing on {coherence}, {clarity}, and {relevance}. Based on the preliminary results and evaluation, BERTopic shows stronger performance and is selected for further experimentation using three {clinically oriented embedding} models. We then analyzed the full interview collection with the best model setting. Results show that domain-specific embeddings improved topic \textit{precision} and \textit{interpretability}, with BioClinicalBERT producing the most consistent results across transcripts. The global analysis of the full dataset of 13 interviews, using the BioClinicalBERT embedding model, reveals the most dominant topics throughout all 13 interviews, namely ``Coordination and Communication in Cancer Care Management" and ``Patient Decision-Making in Cancer Treatment Journey''. Although the interviews are machine translations from Dutch to English, and clinical professionals are not involved in this evaluation, the findings suggest that neural topic modeling, particularly BERTopic, can help provide useful feedback to clinicians from patient interviews. This pipeline could support more efficient document navigation and strengthen the role of patients' voices in healthcare workflows.
Climate discourse online plays a crucial role in shaping public understanding of climate change and influencing political and policy outcomes. However, climate communication unfolds across structurally distinct platforms with fundamentally different incentive structures: paid advertising ecosystems incentivize targeted, strategic persuasion, while public social media platforms host largely organic, user-driven discourse. Existing computational studies typically analyze these environments in isolation, limiting our ability to distinguish institutional messaging from public expression. In this work, we present a comparative analysis of climate discourse across paid advertisements on Meta (previously known as Facebook) and public posts on Bluesky from July 2024 to September 2025. We introduce an interpretable, end-to-end thematic discovery and assignment framework that clusters texts by semantic similarity and leverages large language models (LLMs) to generate concise, human-interpretable theme labels. We evaluate the quality of the induced themes against traditional topic modeling baselines using both human judgments and an LLM-based evaluator, and further validate their semantic coherence through downstream stance prediction and theme-guided retrieval tasks. Applying the resulting themes, we characterize systematic differences between paid climate messaging and public climate discourse and examine how thematic prevalence shifts around major political events. Our findings show that platform-level incentives are reflected in the thematic structure, stance alignment, and temporal responsiveness of climate narratives. While our empirical analysis focuses on climate communication, the proposed framework is designed to support comparative narrative analysis across heterogeneous communication environments.
The rapid expansion of research across machine learning, vision, and language has produced a volume of publications that is increasingly difficult to synthesize. Traditional bibliometric tools rely mainly on metadata and offer limited visibility into the semantic content of papers, making it hard to track how research themes evolve over time or how different areas influence one another. To obtain a clearer picture of recent developments, we compile a unified corpus of more than 100,000 papers from 22 major conferences between 2020 and 2025 and construct a multidimensional profiling pipeline to organize and analyze their textual content. By combining topic clustering, LLM-assisted parsing, and structured retrieval, we derive a comprehensive representation of research activity that supports the study of topic lifecycles, methodological transitions, dataset and model usage patterns, and institutional research directions. Our analysis highlights several notable shifts, including the growth of safety, multimodal reasoning, and agent-oriented studies, as well as the gradual stabilization of areas such as neural machine translation and graph-based methods. These findings provide an evidence-based view of how AI research is evolving and offer a resource for understanding broader trends and identifying emerging directions. Code and dataset: https://github.com/xzc-zju/Profiling_Scientific_Literature
Designing good reflection questions is pedagogically important but time-consuming and unevenly supported across teachers. This paper introduces a reflection-in-reflection framework for automated generation of reflection questions with large language models (LLMs). Our approach coordinates two role-specialized agents, a Student-Teacher and a Teacher-Educator, that engage in a Socratic multi-turn dialogue to iteratively refine a single question given a teacher-specified topic, key concepts, student level, and optional instructional materials. The Student-Teacher proposes candidate questions with brief rationales, while the Teacher-Educator evaluates them along clarity, depth, relevance, engagement, and conceptual interconnections, responding only with targeted coaching questions or a fixed signal to stop the dialogue. We evaluate the framework in an authentic lower-secondary ICT setting on the topic, using GPT-4o-mini as the backbone model and a stronger GPT- 4-class LLM as an external evaluator in pairwise comparisons of clarity, relevance, depth, and overall quality. First, we study how interaction design and context (dynamic vs.fixed iteration counts; presence or absence of student level and materials) affect question quality. Dynamic stopping combined with contextual information consistently outperforms fixed 5- or 10-step refinement, with very long dialogues prone to drift or over-complication. Second, we show that our two-agent protocol produces questions that are judged substantially more relevant and deeper, and better overall, than a one-shot baseline using the same backbone model.
We develop a two-stage retrieval system that combines multiple complementary retrieval methods with a learned reranker and LLM-based reranking, to address the TREC Tip-of-the-Tongue (ToT) task. In the first stage, we employ hybrid retrieval that merges LLM-based retrieval, sparse (BM25), and dense (BGE-M3) retrieval methods. We also introduce topic-aware multi-index dense retrieval that partitions the Wikipedia corpus into 24 topical domains. In the second stage, we evaluate both a trained LambdaMART reranker and LLM-based reranking. To support model training, we generate 5000 synthetic ToT queries using LLMs. Our best system achieves recall of 0.66 and NDCG@1000 of 0.41 on the test set by combining hybrid retrieval with Gemini-2.5-flash reranking, demonstrating the effectiveness of fusion retrieval.
As the volume of unstructured text continues to grow across domains, there is an urgent need for scalable methods that enable interpretable organization, summarization, and retrieval of information. This work presents a unified framework for interpretable topic modeling, zero-shot topic labeling, and topic-guided semantic retrieval over large agricultural text corpora. Leveraging BERTopic, we extract semantically coherent topics. Each topic is converted into a structured prompt, enabling a language model to generate meaningful topic labels and summaries in a zero-shot manner. Querying and document exploration are supported via dense embeddings and vector search, while a dedicated evaluation module assesses topical coherence and bias. This framework supports scalable and interpretable information access in specialized domains where labeled data is limited.
Research waste in biomedical science is driven by redundant studies, incomplete reporting, and the limited scalability of traditional evidence synthesis workflows. We present an AI co-scientist for scalable and transparent knowledge synthesis based on explicit formalization of Population, Intervention, Comparator, Outcome, and Study design (PICOS). The platform integrates relational storage, vector-based semantic retrieval, and a Neo4j knowledge graph. Evaluation was conducted on dementia-sport and non-communicable disease corpora. Automated PICOS compliance and study design classification from titles and abstracts were performed using a Bidirectional Long Short-Term Memory baseline and a transformer-based multi-task classifier fine-tuned from PubMedBERT. Full-text synthesis employed retrieval-augmented generation with hybrid vector and graph retrieval, while BERTopic was used to identify thematic structure, redundancy, and evidence gaps. The transformer model achieved 95.7% accuracy for study design classification with strong agreement against expert annotations, while the Bi-LSTM achieved 87% accuracy for PICOS compliance detection. Retrieval-augmented generation outperformed non-retrieval generation for queries requiring structured constraints, cross-study integration, and graph-based reasoning, whereas non-retrieval approaches remained competitive for high-level summaries. Topic modeling revealed substantial thematic redundancy and identified underexplored research areas. These results demonstrate that PICOS-aware and explainable natural language processing can improve the scalability, transparency, and efficiency of evidence synthesis. The proposed architecture is domain-agnostic and offers a practical framework for reducing research waste across biomedical disciplines.