Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
To develop a reliable AI for psychological assessment, we introduce \texttt{PsychEval}, a multi-session, multi-therapy, and highly realistic benchmark designed to address three key challenges: \textbf{1) Can we train a highly realistic AI counselor?} Realistic counseling is a longitudinal task requiring sustained memory and dynamic goal tracking. We propose a multi-session benchmark (spanning 6-10 sessions across three distinct stages) that demands critical capabilities such as memory continuity, adaptive reasoning, and longitudinal planning. The dataset is annotated with extensive professional skills, comprising over 677 meta-skills and 4577 atomic skills. \textbf{2) How to train a multi-therapy AI counselor?} While existing models often focus on a single therapy, complex cases frequently require flexible strategies among various therapies. We construct a diverse dataset covering five therapeutic modalities (Psychodynamic, Behaviorism, CBT, Humanistic Existentialist, and Postmodernist) alongside an integrative therapy with a unified three-stage clinical framework across six core psychological topics. \textbf{3) How to systematically evaluate an AI counselor?} We establish a holistic evaluation framework with 18 therapy-specific and therapy-shared metrics across Client-Level and Counselor-Level dimensions. To support this, we also construct over 2,000 diverse client profiles. Extensive experimental analysis fully validates the superior quality and clinical fidelity of our dataset. Crucially, \texttt{PsychEval} transcends static benchmarking to serve as a high-fidelity reinforcement learning environment that enables the self-evolutionary training of clinically responsible and adaptive AI counselors.
Large language models (LLMs) achieve strong performance on many tasks, but their progress remains uneven across languages and cultures, often reflecting values latent in English-centric training data. To enable practical cultural alignment, we propose a scalable approach that leverages national social studies curricula as a foundation for culture-aware supervision. We introduce CuCu, an automated multi-agent LLM framework that transforms national textbook curricula into open-ended, culture-specific question-answer pairs. Applying CuCu to the Korean national social studies curriculum, we construct KCaQA, comprising 34.1k open-ended QA pairs. Our quantitative and qualitative analyses suggest that KCaQA covers culture-specific topics and produces responses grounded in local sociocultural contexts.
Cochlear Implant (CI) surgery treats severe hearing loss by inserting an electrode array into the cochlea to stimulate the auditory nerve. An important step in this procedure is mastoidectomy, which removes part of the mastoid region of the temporal bone to provide surgical access. Accurate mastoidectomy shape prediction from preoperative imaging improves pre-surgical planning, reduces risks, and enhances surgical outcomes. Despite its importance, there are limited deep-learning-based studies regarding this topic due to the challenges of acquiring ground-truth labels. We address this gap by investigating self-supervised and weakly-supervised learning models to predict the mastoidectomy region without human annotations. We propose a hybrid self-supervised and weakly-supervised learning framework to predict the mastoidectomy region directly from preoperative CT scans, where the mastoid remains intact. Our hybrid method achieves a mean Dice score of 0.72 when predicting the complex and boundary-less mastoidectomy shape, surpassing state-of-the-art approaches and demonstrating strong performance. The method provides groundwork for constructing 3D postmastoidectomy surfaces directly from the corresponding preoperative CT scans. To our knowledge, this is the first work that integrating self-supervised and weakly-supervised learning for mastoidectomy shape prediction, offering a robust and efficient solution for CI surgical planning while leveraging 3D T-distribution loss in weakly-supervised medical imaging.
Identifying suitable datasets for a research question remains challenging because existing dataset search engines rely heavily on metadata quality and keyword overlap, which often fail to capture the semantic intent of scientific investigation. We introduce a literature-driven framework that discovers datasets from citation contexts in scientific papers, enabling retrieval grounded in actual research use rather than metadata availability. Our approach combines large-scale citation-context extraction, schema-guided dataset recognition with Large Language Models, and provenance-preserving entity resolution. We evaluate the system on eight survey-derived computer science queries and find that it achieves substantially higher recall than Google Dataset Search and DataCite Commons, with normalized recall ranging from an average of 47.47% to a highest value of 81.82%. Beyond recovering gold-standard datasets, the method also surfaces additional datasets not documented in the surveys. Expert assessments across five top-level Fields of Science indicate that a substantial portion of the additional datasets are considered high utility, and some are regarded as novel for the specific topics chosen by the experts. These findings establish citation-context mining as an effective and generalizable paradigm for dataset discovery, particularly in settings where datasets lack sufficient or reliable metadata. To support reproducibility and future extensions, we release our code, evaluation datasets, and results on GitHub (https://github.com/Fireblossom/citation-context-dataset-discovery).
This paper addresses the topic of robustness under sensing noise, ambiguous instructions, and human-robot interaction. We take a radically different tack to the issue of reliable embodied AI: instead of focusing on formal verification methods aimed at achieving model predictability and robustness, we emphasise the dynamic, ambiguous and subjective nature of human-robot interactions that requires embodied AI systems to perceive, interpret, and respond to human intentions in a manner that is consistent, comprehensible and aligned with human expectations. We argue that when embodied agents operate in human environments that are inherently social, multimodal, and fluid, reliability is contextually determined and only has meaning in relation to the goals and expectations of humans involved in the interaction. This calls for a fundamentally different approach to achieving reliable embodied AI that is centred on building and updating an accessible "explicit world model" representing the common ground between human and AI, that is used to align robot behaviours with human expectations.
Tracking objects that move within dynamic environments is a core challenge in robotics. Recent research has advanced this topic significantly; however, many existing approaches remain inefficient due to their reliance on heavy foundation models. To address this limitation, we propose LOST-3DSG, a lightweight open-vocabulary 3D scene graph designed to track dynamic objects in real-world environments. Our method adopts a semantic approach to entity tracking based on word2vec and sentence embeddings, enabling an open-vocabulary representation while avoiding the necessity of storing dense CLIP visual features. As a result, LOST-3DSG achieves superior performance compared to approaches that rely on high-dimensional visual embeddings. We evaluate our method through qualitative and quantitative experiments conducted in a real 3D environment using a TIAGo robot. The results demonstrate the effectiveness and efficiency of LOST-3DSG in dynamic object tracking. Code and supplementary material are publicly available on the project website at https://lab-rococo-sapienza.github.io/lost-3dsg/.
With the development of teleconferencing and in-vehicle voice assistants, far-field multi-speaker speech recognition has become a hot research topic. Recently, a multi-channel transformer (MCT) has been proposed, which demonstrates the ability of the transformer to model far-field acoustic environments. However, MCT cannot encode high-dimensional acoustic features for each speaker from mixed input audio because of the interference between speakers. Based on these, we propose the multi-channel multi-speaker transformer (M2Former) for far-field multi-speaker ASR in this paper. Experiments on the SMS-WSJ benchmark show that the M2Former outperforms the neural beamformer, MCT, dual-path RNN with transform-average-concatenate and multi-channel deep clustering based end-to-end systems by 9.2%, 14.3%, 24.9%, and 52.2% respectively, in terms of relative word error rate reduction.
The increasing production of waste, driven by population growth, has created challenges in managing and recycling materials effectively. Manual waste sorting is a common practice; however, it remains inefficient for handling large-scale waste streams and presents health risks for workers. On the other hand, existing automated sorting approaches still struggle with the high variability, clutter, and visual complexity of real-world waste streams. The lack of real-world datasets for waste sorting is a major reason automated systems for this problem are underdeveloped. Accordingly, we introduce SortWaste, a densely annotated object detection dataset collected from a Material Recovery Facility. Additionally, we contribute to standardizing waste detection in sorting lines by proposing ClutterScore, an objective metric that gauges the scene's hardness level using a set of proxies that affect visual complexity (e.g., object count, class and size entropy, and spatial overlap). In addition to these contributions, we provide an extensive benchmark of state-of-the-art object detection models, detailing their results with respect to the hardness level assessed by the proposed metric. Despite achieving promising results (mAP of 59.7% in the plastic-only detection task), performance significantly decreases in highly cluttered scenes. This highlights the need for novel and more challenging datasets on the topic.
Despite recent advances in understanding and leveraging long-range conversational memory, existing benchmarks still lack systematic evaluation of large language models(LLMs) across diverse memory dimensions, particularly in multi-session settings. In this work, we propose EvolMem, a new benchmark for assessing multi-session memory capabilities of LLMs and agent systems. EvolMem is grounded in cognitive psychology and encompasses both declarative and non-declarative memory, further decomposed into multiple fine-grained abilities. To construct the benchmark, we introduce a hybrid data synthesis framework that consists of topic-initiated generation and narrative-inspired transformations. This framework enables scalable generation of multi-session conversations with controllable complexity, accompanied by sample-specific evaluation guidelines. Extensive evaluation reveals that no LLM consistently outperforms others across all memory dimensions. Moreover, agent memory mechanisms do not necessarily enhance LLMs' capabilities and often exhibit notable efficiency limitations. Data and code will be released at https://github.com/shenye7436/EvolMem.
Segmenting speech transcripts into thematic sections benefits both downstream processing and users who depend on written text for accessibility. We introduce a novel approach to hierarchical topic segmentation in transcripts, generating multi-level tables of contents that capture both topic and subtopic boundaries. We compare zero-shot prompting and LoRA fine-tuning on large language models, while also exploring the integration of high-level speech pause features. Evaluations on English meeting recordings and multilingual lecture transcripts (Portuguese, German) show significant improvements over established topic segmentation baselines. Additionally, we adapt a common evaluation measure for multi-level segmentation, taking into account all hierarchical levels within one metric.