Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Reporting quality is an important topic in clinical trial research articles, as it can impact clinical decisions. In this article, we test the ability of large language models to assess the reporting quality of this type of article using the Consolidated Standards of Reporting Trials (CONSORT). We create CONSORT-QA, an evaluation corpus from two studies on abstract reporting quality with CONSORT-abstract standards. We then evaluate the ability of different large generative language models (from the general domain or adapted to the biomedical domain) to correctly assess CONSORT criteria with different known prompting methods, including Chain-of-thought. Our best combination of model and prompting method achieves 85% accuracy. Using Chain-of-thought adds valuable information on the model's reasoning for completing the task.
Models employing long chain-of-thought (CoT) reasoning have shown superior performance on complex reasoning tasks. Yet, this capability introduces a critical and often overlooked inefficiency -- overthinking -- models often engage in unnecessarily extensive reasoning even for simple queries, incurring significant computations without accuracy improvements. While prior work has explored solutions to mitigate overthinking, a fundamental gap remains in our understanding of its underlying causes. Most existing analyses are limited to superficial, profiling-based observations, failing to delve into LLMs' inner workings. This study introduces a systematic, fine-grained analyzer of LLMs' thought process to bridge the gap, TRACE. We first benchmark the overthinking issue, confirming that long-thinking models are five to twenty times slower on simple tasks with no substantial gains. We then use TRACE to first decompose the thought process into minimally complete sub-thoughts. Next, by inferring discourse relationships among sub-thoughts, we construct granular thought progression graphs and subsequently identify common thinking patterns for topically similar queries. Our analysis reveals two major patterns for open-weight thinking models -- Explorer and Late Landing. This finding provides evidence that over-verification and over-exploration are the primary drivers of overthinking in LLMs. Grounded in thought structures, we propose a utility-based definition of overthinking, which moves beyond length-based metrics. This revised definition offers a more insightful understanding of LLMs' thought progression, as well as practical guidelines for principled overthinking management.
The unjudged document problem, where pooled test collections have incomplete relevance judgments for evaluating new retrieval systems, is a key obstacle to the reusability of test collections in information retrieval. While the de facto standard to deal with the problem is to treat unjudged documents as non-relevant, many alternatives have been proposed, including the use of large language models (LLMs) as a relevance judge (LLM-as-a-judge). However, this has been criticized as circular, since the same LLM can be used as a judge and as a ranker at the same time. We propose to train topic-specific relevance classifiers instead: By finetuning monoT5 with independent LoRA weight adaptation on the judgments of a single assessor for a single topic's pool, we align it to that assessor's notion of relevance for the topic. The system rankings obtained through our classifier's relevance judgments achieve a Spearmans' $\rho$ correlation of $>0.95$ with ground truth system rankings. As little as 128 initial human judgments per topic suffice to improve the comparability of models, compared to treating unjudged documents as non-relevant, while achieving more reliability than existing LLM-as-a-judge approaches. Topic-specific relevance classifiers thus are a lightweight and straightforward way to tackle the unjudged document problem, while maintaining human judgments as the gold standard for retrieval evaluation. Code, models, and data are made openly available.
We present a transparent, reproducible measurement of research trends across 26,104 accepted papers from CVPR, ICLR, and NeurIPS spanning 2023-2025. Titles and abstracts are normalized, phrase-protected, and matched against a hand-crafted lexicon to assign up to 35 topical labels and mine fine-grained cues about tasks, architectures, training regimes, objectives, datasets, and co-mentioned modalities. The analysis quantifies three macro shifts: (1) a sharp rise of multimodal vision-language-LLM work, which increasingly reframes classic perception as instruction following and multi-step reasoning; (2) steady expansion of generative methods, with diffusion research consolidating around controllability, distillation, and speed; and (3) resilient 3D and video activity, with composition moving from NeRFs to Gaussian splatting and a growing emphasis on human- and agent-centric understanding. Within VLMs, parameter-efficient adaptation like prompting/adapters/LoRA and lightweight vision-language bridges dominate; training practice shifts from building encoders from scratch to instruction tuning and finetuning strong backbones; contrastive objectives recede relative to cross-entropy/ranking and distillation. Cross-venue comparisons show CVPR has a stronger 3D footprint and ICLR the highest VLM share, while reliability themes such as efficiency or robustness diffuse across areas. We release the lexicon and methodology to enable auditing and extension. Limitations include lexicon recall and abstract-only scope, but the longitudinal signals are consistent across venues and years.
Multimodal Large Language Models (MLLMs) have made substantial progress in recent years. However, their rigorous evaluation within specialized domains like finance is hindered by the absence of datasets characterized by professional-level knowledge intensity, detailed annotations, and advanced reasoning complexity. To address this critical gap, we introduce FinMR, a high-quality, knowledge-intensive multimodal dataset explicitly designed to evaluate expert-level financial reasoning capabilities at a professional analyst's standard. FinMR comprises over 3,200 meticulously curated and expertly annotated question-answer pairs across 15 diverse financial topics, ensuring broad domain diversity and integrating sophisticated mathematical reasoning, advanced financial knowledge, and nuanced visual interpretation tasks across multiple image types. Through comprehensive benchmarking with leading closed-source and open-source MLLMs, we highlight significant performance disparities between these models and professional financial analysts, uncovering key areas for model advancement, such as precise image analysis, accurate application of complex financial formulas, and deeper contextual financial understanding. By providing richly varied visual content and thorough explanatory annotations, FinMR establishes itself as an essential benchmark tool for assessing and advancing multimodal financial reasoning toward professional analyst-level competence.
This paper examines how outliers, often dismissed as noise in topic modeling, can act as weak signals of emerging topics in dynamic news corpora. Using vector embeddings from state-of-the-art language models and a cumulative clustering approach, we track their evolution over time in French and English news datasets focused on corporate social responsibility and climate change. The results reveal a consistent pattern: outliers tend to evolve into coherent topics over time across both models and languages.
Recent advancements in large language models (LLMs) have significantly transformed medical systems. However, their potential within specialized domains such as nursing remains largely underexplored. In this work, we introduce NurseLLM, the first nursing-specialized LLM tailored for multiple choice question-answering (MCQ) tasks. We develop a multi-stage data generation pipeline to build the first large scale nursing MCQ dataset to train LLMs on a broad spectrum of nursing topics. We further introduce multiple nursing benchmarks to enable rigorous evaluation. Our extensive experiments demonstrate that NurseLLM outperforms SoTA general-purpose and medical-specialized LLMs of comparable size on different benchmarks, underscoring the importance of a specialized LLM for the nursing domain. Finally, we explore the role of reasoning and multi-agent collaboration systems in nursing, highlighting their promise for future research and applications.
The black-box domain adaptation (BBDA) topic is developed to address the privacy and security issues where only an application programming interface (API) of the source model is available for domain adaptations. Although the BBDA topic has attracted growing research attentions, existing works mostly target the vision applications and are not directly applicable to the time-series applications possessing unique spatio-temporal characteristics. In addition, none of existing approaches have explored the strength of foundation model for black box time-series domain adaptation (BBTSDA). This paper proposes a concept of Cross-Prompt Foundation Model (CPFM) for the BBTSDA problems. CPFM is constructed under a dual branch network structure where each branch is equipped with a unique prompt to capture different characteristics of data distributions. In the domain adaptation phase, the reconstruction learning phase in the prompt and input levels is developed. All of which are built upon a time-series foundation model to overcome the spatio-temporal dynamic. Our rigorous experiments substantiate the advantage of CPFM achieving improved results with noticeable margins from its competitors in three time-series datasets of different application domains.
Our interpretation of value concepts is shaped by our sociocultural background and lived experiences, and is thus subjective. Recognizing individual value interpretations is important for developing AI systems that can align with diverse human perspectives and avoid bias toward majority viewpoints. To this end, we investigate whether a language model can predict individual value interpretations by leveraging multi-dimensional subjective annotations as a proxy for their interpretive lens. That is, we evaluate whether providing examples of how an individual annotates Sentiment, Emotion, Argument, and Topics (SEAT dimensions) helps a language model in predicting their value interpretations. Our experiment across different zero- and few-shot settings demonstrates that providing all SEAT dimensions simultaneously yields superior performance compared to individual dimensions and a baseline where no information about the individual is provided. Furthermore, individual variations across annotators highlight the importance of accounting for the incorporation of individual subjective annotators. To the best of our knowledge, this controlled setting, although small in size, is the first attempt to go beyond demographics and investigate the impact of annotation behavior on value prediction, providing a solid foundation for future large-scale validation.
Automated document classification is a trending topic in Natural Language Processing (NLP) due to the extensive growth in digital databases. However, a model that fits well for a specific classification task might perform weakly for another dataset due to differences in the context. Thus, training and evaluating several models is necessary to optimise the results. This study employs a publicly available document database on worldwide digital development interventions categorised under twelve areas. Since digital interventions are still emerging, utilising NLP in the field is relatively new. Given the exponential growth of digital interventions, this research has a vast scope for improving how digital-development-oriented organisations report their work. The paper examines the classification performance of Machine Learning (ML) algorithms, including Decision Trees, k-Nearest Neighbors, Support Vector Machine, AdaBoost, Stochastic Gradient Descent, Naive Bayes, and Logistic Regression. Accuracy, precision, recall and F1-score are utilised to evaluate the performance of these models, while oversampling is used to address the class-imbalanced nature of the dataset. Deviating from the traditional approach of fitting a single model for multiclass classification, this paper investigates the One vs Rest approach to build a combined model that optimises the performance. The study concludes that the amount of data is not the sole factor affecting the performance; features like similarity within classes and dissimilarity among classes are also crucial.