Screening prioritisation in medical systematic reviews aims to rank the set of documents retrieved by complex Boolean queries. The goal is to prioritise the most important documents so that subsequent review steps can be carried out more efficiently and effectively. The current state of the art uses the final title of the review to rank documents using BERT-based neural neural rankers. However, the final title is only formulated at the end of the review process, which makes this approach impractical as it relies on ex post facto information. At the time of screening, only a rough working title is available, with which the BERT-based ranker achieves is significantly worse than the final title. In this paper, we explore alternative sources of queries for screening prioritisation, such as the Boolean query used to retrieve the set of documents to be screened, and queries generated by instruction-based generative large language models such as ChatGPT and Alpaca. Our best approach is not only practical based on the information available at screening time, but is similar in effectiveness with the final title.
As in other fields of artificial intelligence, the information retrieval community has grown interested in investigating the power consumption associated with neural models, particularly models of search. This interest has become particularly relevant as the energy consumption of information retrieval models has risen with new neural models based on large language models, leading to an associated increase of CO2 emissions, albeit relatively low compared to fields such as natural language processing.
The Archive Query Log (AQL) is a previously unused, comprehensive query log collected at the Internet Archive over the last 25 years. Its first version includes 356 million queries, 166 million search result pages, and 1.7 billion search results across 550 search providers. Although many query logs have been studied in the literature, the search providers that own them generally do not publish their logs to protect user privacy and vital business data. Of the few query logs publicly available, none combines size, scope, and diversity. The AQL is the first to do so, enabling research on new retrieval models and (diachronic) search engine analyses. Provided in a privacy-preserving manner, it promotes open research as well as more transparency and accountability in the search industry.
Systematic reviews are comprehensive reviews of the literature for a highly focused research question. These reviews are often treated as the highest form of evidence in evidence-based medicine, and are the key strategy to answer research questions in the medical field. To create a high-quality systematic review, complex Boolean queries are often constructed to retrieve studies for the review topic. However, it often takes a long time for systematic review researchers to construct a high quality systematic review Boolean query, and often the resulting queries are far from effective. Poor queries may lead to biased or invalid reviews, because they missed to retrieve key evidence, or to extensive increase in review costs, because they retrieved too many irrelevant studies. Recent advances in Transformer-based generative models have shown great potential to effectively follow instructions from users and generate answers based on the instructions being made. In this paper, we investigate the effectiveness of the latest of such models, ChatGPT, in generating effective Boolean queries for systematic review literature search. Through a number of extensive experiments on standard test collections for the task, we find that ChatGPT is capable of generating queries that lead to high search precision, although trading-off this for recall. Overall, our study demonstrates the potential of ChatGPT in generating effective Boolean queries for systematic review literature search. The ability of ChatGPT to follow complex instructions and generate queries with high precision makes it a valuable tool for researchers conducting systematic reviews, particularly for rapid reviews where time is a constraint and often trading-off higher precision for lower recall is acceptable.
Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (unordered) set of retrieved documents, allowing assessors to begin the downstream processes of the systematic review creation earlier, leading to earlier completion of the review, or even avoiding screening documents ranked least relevant. Screening prioritisation requires highly effective ranking methods. Pre-trained language models are state-of-the-art on many IR tasks but have yet to be applied to systematic review screening prioritisation. In this paper, we apply several pre-trained language models to the systematic review document ranking task, both directly and fine-tuned. An empirical analysis compares how effective neural methods compare to traditional methods for this task. We also investigate different types of document representations for neural methods and their impact on ranking performance. Our results show that BERT-based rankers outperform the current state-of-the-art screening prioritisation methods. However, BERT rankers and existing methods can actually be complementary, and thus, further improvements may be achieved if used in conjunction.
Entity Alignment (EA) aims to find equivalent entities between two Knowledge Graphs (KGs). While numerous neural EA models have been devised, they are mainly learned using labelled data only. In this work, we argue that different entities within one KG should have compatible counterparts in the other KG due to the potential dependencies among the entities. Making compatible predictions thus should be one of the goals of training an EA model along with fitting the labelled data: this aspect however is neglected in current methods. To power neural EA models with compatibility, we devise a training framework by addressing three problems: (1) how to measure the compatibility of an EA model; (2) how to inject the property of being compatible into an EA model; (3) how to optimise parameters of the compatibility model. Extensive experiments on widely-used datasets demonstrate the advantages of integrating compatibility within EA models. In fact, state-of-the-art neural EA models trained within our framework using just 5\% of the labelled data can achieve comparable effectiveness with supervised training using 20\% of the labelled data.
High-quality medical systematic reviews require comprehensive literature searches to ensure the recommendations and outcomes are sufficiently reliable. Indeed, searching for relevant medical literature is a key phase in constructing systematic reviews and often involves domain (medical researchers) and search (information specialists) experts in developing the search queries. Queries in this context are highly complex, based on Boolean logic, include free-text terms and index terms from standardised terminologies (e.g., the Medical Subject Headings (MeSH) thesaurus), and are difficult and time-consuming to build. The use of MeSH terms, in particular, has been shown to improve the quality of the search results. However, identifying the correct MeSH terms to include in a query is difficult: information experts are often unfamiliar with the MeSH database and unsure about the appropriateness of MeSH terms for a query. Naturally, the full value of the MeSH terminology is often not fully exploited. This article investigates methods to suggest MeSH terms based on an initial Boolean query that includes only free-text terms. In this context, we devise lexical and pre-trained language models based methods. These methods promise to automatically identify highly effective MeSH terms for inclusion in a systematic review query. Our study contributes an empirical evaluation of several MeSH term suggestion methods. We further contribute an extensive analysis of MeSH term suggestions for each method and how these suggestions impact the effectiveness of Boolean queries.
Medical systematic review query formulation is a highly complex task done by trained information specialists. Complexity comes from the reliance on lengthy Boolean queries, which express a detailed research question. To aid query formulation, information specialists use a set of exemplar documents, called `seed studies', prior to query formulation. Seed studies help verify the effectiveness of a query prior to the full assessment of retrieved studies. Beyond this use of seeds, specific IR methods can exploit seed studies for guiding both automatic query formulation and new retrieval models. One major limitation of work to date is that these methods exploit `pseudo seed studies' through retrospective use of included studies (i.e., relevance assessments). However, we show pseudo seed studies are not representative of real seed studies used by information specialists. Hence, we provide a test collection with real world seed studies used to assist with the formulation of queries. To support our collection, we provide an analysis, previously not possible, on how seed studies impact retrieval and perform several experiments using seed-study based methods to compare the effectiveness of using seed studies versus pseudo seed studies. We make our test collection and the results of all of our experiments and analysis available at http://github.com/ielab/sysrev-seed-collection
Screening or assessing studies is critical to the quality and outcomes of a systematic review. Typically, a Boolean query retrieves the set of studies to screen. As the set of studies retrieved is unordered, screening all retrieved studies is usually required for high-quality systematic reviews. Screening prioritisation, or in other words, ranking the set of studies, enables downstream activities of a systematic review to begin in parallel. We investigate a method that exploits seed studies -- potentially relevant studies used to seed the query formulation process -- for screening prioritisation. Our investigation aims to reproduce this method to determine if it is generalisable on recently published datasets and determine the impact of using multiple seed studies on effectiveness.We show that while we could reproduce the original methods, we could not replicate their results exactly. However, we believe this is due to minor differences in document pre-processing, not deficiencies with the original methodology. Our results also indicate that our reproduced screening prioritisation method, (1) is generalisable across datasets of similar and different topicality compared to the original implementation, (2) that when using multiple seed studies, the effectiveness of the method increases using our techniques to enable this, (3) and that the use of multiple seed studies produces more stable rankings compared to single seed studies. Finally, we make our implementation and results publicly available at the following URL: https://github.com/ielab/sdr