Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Differential privacy (DP) is a prominent method for protecting information about individuals during data analysis. Training neural networks with differentially private stochastic gradient descent (DPSGD) influences the model's learning dynamics and, consequently, its output. This can affect the model's performance and fairness. While the majority of studies on the topic report a negative impact on fairness, it has recently been suggested that fairness levels comparable to non-private models can be achieved by optimizing hyperparameters for performance directly on differentially private models (rather than re-using hyperparameters from non-private models, as is common practice). In this work, we analyze the generalizability of this claim by 1) comparing the disparate impact of DPSGD on different performance metrics, and 2) analyzing it over a wide range of hyperparameter settings. We highlight that a disparate impact on one metric does not necessarily imply a disparate impact on another. Most importantly, we show that while optimizing hyperparameters directly on differentially private models does not mitigate the disparate impact of DPSGD reliably, it can still lead to improved utility-fairness trade-offs compared to re-using hyperparameters from non-private models. We stress, however, that any form of hyperparameter tuning entails additional privacy leakage, calling for careful considerations of how to balance privacy, utility and fairness. Finally, we extend our analyses to DPSGD-Global-Adapt, a variant of DPSGD designed to mitigate the disparate impact on accuracy, and conclude that this alternative may not be a robust solution with respect to hyperparameter choice.
Unsupervised analysis of text corpora is challenging, especially in data-scarce domains where traditional topic models struggle. While these models offer a solution, they typically describe clusters with lists of keywords that require significant manual effort to interpret and often lack semantic coherence. To address this critical interpretability gap, we introduce Recursive Thematic Partitioning (RTP), a novel framework that leverages Large Language Models (LLMs) to interactively build a binary tree. Each node in the tree is a natural language question that semantically partitions the data, resulting in a fully interpretable taxonomy where the logic of each cluster is explicit. Our experiments demonstrate that RTP's question-driven hierarchy is more interpretable than the keyword-based topics from a strong baseline like BERTopic. Furthermore, we establish the quantitative utility of these clusters by showing they serve as powerful features in downstream classification tasks, particularly when the data's underlying themes correlate with the task labels. RTP introduces a new paradigm for data exploration, shifting the focus from statistical pattern discovery to knowledge-driven thematic analysis. Furthermore, we demonstrate that the thematic paths from the RTP tree can serve as structured, controllable prompts for generative models. This transforms our analytical framework into a powerful tool for synthesis, enabling the consistent imitation of specific characteristics discovered in the source corpus.
Artificial intelligence is undergoing the paradigm shift from closed language models to interconnected agent systems capable of external perception and information integration. As a representative embodiment, Deep Research Agents (DRAs) systematically exhibit the capabilities for task decomposition, cross-source retrieval, multi-stage reasoning, and structured output, which markedly enhance performance on complex and open-ended tasks. However, existing benchmarks remain deficient in evaluation dimensions, response formatting, and scoring mechanisms, limiting their capacity to assess such systems effectively. This paper introduces a rigorous benchmark and a multidimensional evaluation framework tailored to DRAs and report-style responses. The benchmark comprises 214 expert-curated challenging queries distributed across 10 broad thematic domains, each accompanied by manually constructed reference bundles to support composite evaluation. The framework enables comprehensive evaluation of long-form reports generated by DRAs, incorporating integrated scoring metrics for semantic quality, topical focus, and retrieval trustworthiness. Extensive experimentation confirms the superior performance of mainstream DRAs over web-search-tool-augmented reasoning models, yet reveals considerable scope for further improvement. This study provides a robust foundation for capability assessment, architectural refinement, and paradigm advancement in DRA systems.
NLP models require test data that are sufficiently challenging. The difficulty of an example is linked to the topic it originates from (''seed topic''). The relationship between the topic and the difficulty of its instances is stochastic in nature: an example about a difficult topic can happen to be easy, and vice versa. At the scale of the Internet, there are tens of thousands of potential topics, and finding the most difficult one by drawing and evaluating a large number of examples across all topics is computationally infeasible. We formalize this task and treat it as a multi-armed bandit problem. In this framework, each topic is an ''arm,'' and pulling an arm (at a cost) involves drawing a single example, evaluating it, and measuring its difficulty. The goal is to efficiently identify the most difficult topics within a fixed computational budget. We illustrate the bandit problem setup of finding difficult examples for the task of machine translation. We find that various bandit strategies vastly outperform baseline methods like brute-force searching the most challenging topics.
Worldwide visual geo-localization seeks to determine the geographic location of an image anywhere on Earth using only its visual content. Learned representations of geography for visual geo-localization remain an active research topic despite much progress. We formulate geo-localization as aligning the visual representation of the query image with a learned geographic representation. Our novel geographic representation explicitly models the world as a hierarchy of geographic embeddings. Additionally, we introduce an approach to efficiently fuse the appearance features of the query image with its semantic segmentation map, forming a robust visual representation. Our main experiments demonstrate improved all-time bests in 22 out of 25 metrics measured across five benchmark datasets compared to prior state-of-the-art (SOTA) methods and recent Large Vision-Language Models (LVLMs). Additional ablation studies support the claim that these gains are primarily driven by the combination of geographic and visual representations.
Recently, an increasing number of multimodal (text and audio) benchmarks have emerged, primarily focusing on evaluating models' understanding capability. However, exploration into assessing generative capabilities remains limited, especially for open-ended long-form content generation. Significant challenges lie in no reference standard answer, no unified evaluation metrics and uncontrollable human judgments. In this work, we take podcast-like audio generation as a starting point and propose PodEval, a comprehensive and well-designed open-source evaluation framework. In this framework: 1) We construct a real-world podcast dataset spanning diverse topics, serving as a reference for human-level creative quality. 2) We introduce a multimodal evaluation strategy and decompose the complex task into three dimensions: text, speech and audio, with different evaluation emphasis on "Content" and "Format". 3) For each modality, we design corresponding evaluation methods, involving both objective metrics and subjective listening test. We leverage representative podcast generation systems (including open-source, close-source, and human-made) in our experiments. The results offer in-depth analysis and insights into podcast generation, demonstrating the effectiveness of PodEval in evaluating open-ended long-form audio. This project is open-source to facilitate public use: https://github.com/yujxx/PodEval.
As Large Language Models (LLMs) transition from static tools to autonomous agents, traditional evaluation benchmarks that measure performance on downstream tasks are becoming insufficient. These methods fail to capture the emergent social and cognitive dynamics that arise when agents communicate, persuade, and collaborate in interactive environments. To address this gap, we introduce a novel evaluation framework that uses multi-agent debate as a controlled "social laboratory" to discover and quantify these behaviors. In our framework, LLM-based agents, instantiated with distinct personas and incentives, deliberate on a wide range of challenging topics under the supervision of an LLM moderator. Our analysis, enabled by a new suite of psychometric and semantic metrics, reveals several key findings. Across hundreds of debates, we uncover a powerful and robust emergent tendency for agents to seek consensus, consistently reaching high semantic agreement ({\mu} > 0.88) even without explicit instruction and across sensitive topics. We show that assigned personas induce stable, measurable psychometric profiles, particularly in cognitive effort, and that the moderators persona can significantly alter debate outcomes by structuring the environment, a key finding for external AI alignment. This work provides a blueprint for a new class of dynamic, psychometrically grounded evaluation protocols designed for the agentic setting, offering a crucial methodology for understanding and shaping the social behaviors of the next generation of AI agents. We have released the code and results at https://github.com/znreza/multi-agent-LLM-eval-for-debate.




Large language models (LLMs) are known to generate politically biased text, yet how such biases arise remains unclear. A crucial step toward answering this question is the analysis of training data, whose political content remains largely underexplored in current LLM research. To address this gap, we present in this paper an analysis of the pre- and post-training corpora of OLMO2, the largest fully open-source model released together with its complete dataset. From these corpora, we draw large random samples, automatically annotate documents for political orientation, and analyze their source domains and content. We then assess how political content in the training data correlates with models' stance on specific policy issues. Our analysis shows that left-leaning documents predominate across datasets, with pre-training corpora containing significantly more politically engaged content than post-training data. We also find that left- and right-leaning documents frame similar topics through distinct values and sources of legitimacy. Finally, the predominant stance in the training data strongly correlates with models' political biases when evaluated on policy issues. These findings underscore the need to integrate political content analysis into future data curation pipelines as well as in-depth documentation of filtering strategies for transparency.
Curated datasets are essential for training and evaluating AI approaches, but are often lacking in domains where language and physical action are deeply intertwined. In particular, few datasets capture how people acquire embodied skills through verbal instruction over time. To address this gap, we introduce SimCoachCorpus: a unique dataset of race car simulator driving that allows for the investigation of rich interactive phenomena during guided and unguided motor skill acquisition. In this dataset, 29 humans were asked to drive in a simulator around a race track for approximately ninety minutes. Fifteen participants were given personalized one-on-one instruction from a professional performance driving coach, and 14 participants drove without coaching. \name\ includes embodied features such as vehicle state and inputs, map (track boundaries and raceline), and cone landmarks. These are synchronized with concurrent verbal coaching from a professional coach and additional feedback at the end of each lap. We further provide annotations of coaching categories for each concurrent feedback utterance, ratings on students' compliance with coaching advice, and self-reported cognitive load and emotional state of participants (gathered from surveys during the study). The dataset includes over 20,000 concurrent feedback utterances, over 400 terminal feedback utterances, and over 40 hours of vehicle driving data. Our naturalistic dataset can be used for investigating motor learning dynamics, exploring linguistic phenomena, and training computational models of teaching. We demonstrate applications of this dataset for in-context learning, imitation learning, and topic modeling. The dataset introduced in this work will be released publicly upon publication of the peer-reviewed version of this paper. Researchers interested in early access may register at https://tinyurl.com/SimCoachCorpusForm.
The effectiveness of in-context learning relies heavily on selecting demonstrations that provide all the necessary information for a given test input. To achieve this, it is crucial to identify and cover fine-grained knowledge requirements. However, prior methods often retrieve demonstrations based solely on embedding similarity or generation probability, resulting in irrelevant or redundant examples. In this paper, we propose TopicK, a topic coverage-based retrieval framework that selects demonstrations to comprehensively cover topic-level knowledge relevant to both the test input and the model. Specifically, TopicK estimates the topics required by the input and assesses the model's knowledge on those topics. TopicK then iteratively selects demonstrations that introduce previously uncovered required topics, in which the model exhibits low topical knowledge. We validate the effectiveness of TopicK through extensive experiments across various datasets and both open- and closed-source LLMs. Our source code is available at https://github.com/WonbinKweon/TopicK_EMNLP2025.