Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.




With the increasing prevalence of multimodal content on social media, sentiment analysis faces significant challenges in effectively processing heterogeneous data and recognizing multi-label emotions. Existing methods often lack effective cross-modal fusion and external knowledge integration. We propose SentiMM, a novel multi-agent framework designed to systematically address these challenges. SentiMM processes text and visual inputs through specialized agents, fuses multimodal features, enriches context via knowledge retrieval, and aggregates results for final sentiment classification. We also introduce SentiMMD, a large-scale multimodal dataset with seven fine-grained sentiment categories. Extensive experiments demonstrate that SentiMM achieves superior performance compared to state-of-the-art baselines, validating the effectiveness of our structured approach.
Aspect-category sentiment analysis provides granular insights by identifying specific themes within product reviews that are associated with particular opinions. Supervised learning approaches dominate the field. However, data is scarce and expensive to annotate for new domains. We argue that leveraging large language models in a zero-shot setting is beneficial where the time and resources required for dataset annotation are limited. Furthermore, annotation bias may lead to strong results using supervised methods but transfer poorly to new domains in contexts that lack annotations and demand reproducibility. In our work, we propose novel techniques that combine multiple chain-of-thought agents by leveraging large language models' token-level uncertainty scores. We experiment with the 3B and 70B+ parameter size variants of Llama and Qwen models, demonstrating how these approaches can fulfil practical needs and opening a discussion on how to gauge accuracy in label-scarce conditions.
In this paper, we propose a multimodal framework for speech emotion recognition that leverages entropy-aware score selection to combine speech and textual predictions. The proposed method integrates a primary pipeline that consists of an acoustic model based on wav2vec2.0 and a secondary pipeline that consists of a sentiment analysis model using RoBERTa-XLM, with transcriptions generated via Whisper-large-v3. We propose a late score fusion approach based on entropy and varentropy thresholds to overcome the confidence constraints of primary pipeline predictions. A sentiment mapping strategy translates three sentiment categories into four target emotion classes, enabling coherent integration of multimodal predictions. The results on the IEMOCAP and MSP-IMPROV datasets show that the proposed method offers a practical and reliable enhancement over traditional single-modality systems.
As Large Language Models (LLMs) increasingly integrate into everyday workflows, where users shape outcomes through multi-turn collaboration, a critical question emerges: do users with different personality traits systematically prefer certain LLMs over others? We conducted a study with 32 participants evenly distributed across four Keirsey personality types, evaluating their interactions with GPT-4 and Claude 3.5 across four collaborative tasks: data analysis, creative writing, information retrieval, and writing assistance. Results revealed significant personality-driven preferences: Rationals strongly preferred GPT-4, particularly for goal-oriented tasks, while idealists favored Claude 3.5, especially for creative and analytical tasks. Other personality types showed task-dependent preferences. Sentiment analysis of qualitative feedback confirmed these patterns. Notably, aggregate helpfulness ratings were similar across models, showing how personality-based analysis reveals LLM differences that traditional evaluations miss.
Large language models (LLMs) have become essential for applications such as text summarization, sentiment analysis, and automated question-answering. Recently, LLMs have also been integrated into relational database management systems to enhance querying and support advanced data processing. Companies such as Amazon, Databricks, Google, and Snowflake offer LLM invocation directly within SQL, denoted as LLM queries, to boost data insights. However, open-source solutions currently have limited functionality and poor performance. In this work, we present an early exploration of two open-source systems and one enterprise platform, using five representative queries to expose functional, performance, and scalability limits in today's SQL-invoked LLM integrations. We identify three main issues: enforcing structured outputs, optimizing resource utilization, and improving query planning. We implemented initial solutions and observed improvements in accommodating LLM powered SQL queries. These early gains demonstrate that tighter integration of LLM+DBMS is the key to scalable and efficient processing of LLM queries.




Every year, most educational institutions seek and receive an enormous volume of text feedback from students on courses, teaching, and overall experience. Yet, turning this raw feedback into useful insights is far from straightforward. It has been a long-standing challenge to adopt automatic opinion mining solutions for such education review text data due to the content complexity and low-granularity reporting requirements. Aspect-based Sentiment Analysis (ABSA) offers a promising solution with its rich, sub-sentence-level opinion mining capabilities. However, existing ABSA research and resources are very heavily focused on the commercial domain. In education, they are scarce and hard to develop due to limited public datasets and strict data protection. A high-quality, annotated dataset is urgently needed to advance research in this under-resourced area. In this work, we present EduRABSA (Education Review ABSA), the first public, annotated ABSA education review dataset that covers three review subject types (course, teaching staff, university) in the English language and all main ABSA tasks, including the under-explored implicit aspect and implicit opinion extraction. We also share ASQE-DPT (Data Processing Tool), an offline, lightweight, installation-free manual data annotation tool that generates labelled datasets for comprehensive ABSA tasks from a single-task annotation. Together, these resources contribute to the ABSA community and education domain by removing the dataset barrier, supporting research transparency and reproducibility, and enabling the creation and sharing of further resources. The dataset, annotation tool, and scripts and statistics for dataset processing and sampling are available at https://github.com/yhua219/edurabsa_dataset_and_annotation_tool.
Recent advancements in large language models (LLMs) have enabled powerful agent-based applications in finance, particularly for sentiment analysis, financial report comprehension, and stock forecasting. However, existing systems often lack inter-agent coordination, structured self-reflection, and access to high-quality, domain-specific post-training data such as data from trading activities including both market conditions and agent decisions. These data are crucial for agents to understand the market dynamics, improve the quality of decision-making and promote effective coordination. We introduce TradingGroup, a multi-agent trading system designed to address these limitations through a self-reflective architecture and an end-to-end data-synthesis pipeline. TradingGroup consists of specialized agents for news sentiment analysis, financial report interpretation, stock trend forecasting, trading style adaptation, and a trading decision making agent that merges all signals and style preferences to produce buy, sell or hold decisions. Specifically, we design self-reflection mechanisms for the stock forecasting, style, and decision-making agents to distill past successes and failures for similar reasoning in analogous future scenarios and a dynamic risk-management model to offer configurable dynamic stop-loss and take-profit mechanisms. In addition, TradingGroup embeds an automated data-synthesis and annotation pipeline that generates high-quality post-training data for further improving the agent performance through post-training. Our backtesting experiments across five real-world stock datasets demonstrate TradingGroup's superior performance over rule-based, machine learning, reinforcement learning, and existing LLM-based trading strategies.
Sentiment Analysis is widely used to quantify sentiment in text, but its application to literary texts poses unique challenges due to figurative language, stylistic ambiguity, as well as sentiment evocation strategies. Traditional dictionary-based tools often underperform, especially for low-resource languages, and transformer models, while promising, typically output coarse categorical labels that limit fine-grained analysis. We introduce a novel continuous sentiment scoring method based on concept vector projection, trained on multilingual literary data, which more effectively captures nuanced sentiment expressions across genres, languages, and historical periods. Our approach outperforms existing tools on English and Danish texts, producing sentiment scores whose distribution closely matches human ratings, enabling more accurate analysis and sentiment arc modeling in literature.
While Large Language Models (LLMs) have revolutionized artificial intelligence, fine-tuning LLMs is extraordinarily computationally expensive, preventing smaller businesses and research teams with limited GPU resources from engaging with new research. Hu et al and Liu et al introduce Low-Rank Adaptation (LoRA) and Weight-Decomposed Low-Rank Adaptation (DoRA) as highly efficient and performant solutions to the computational challenges of LLM fine-tuning, demonstrating huge speedups and memory usage savings for models such as GPT-3 and RoBERTa. We seek to expand upon the original LoRA and DoRA papers by benchmarking efficiency and performance of LoRA and DoRA when applied to a much smaller scale of language model: our case study here is the compact minBERT model. Our findings reveal that optimal custom configurations of LoRA and DoRA, coupled with Automatic Mixed Precision (AMP), significantly enhance training efficiency without compromising performance. Furthermore, while the parameterization of minBERT is significantly smaller than GPT-3, our results validate the observation that gradient updates to language models are inherently low-rank even in small model space, observing that rank 1 decompositions yield negligible performance deficits. Furthermore, aided by our highly efficient minBERT implementation, we investigate numerous architectures, custom loss functions, and hyperparameters to ultimately train an optimal ensembled multitask minBERT model to simultaneously perform sentiment analysis, paraphrase detection, and similarity scoring.
Digital health analytics face critical challenges nowadays. The sophisticated analysis of patient-generated health content, which contains complex emotional and medical contexts, requires scarce domain expertise, while traditional ML approaches are constrained by data shortage and privacy limitations in healthcare settings. Online Health Communities (OHCs) exemplify these challenges with mixed-sentiment posts, clinical terminology, and implicit emotional expressions that demand specialised knowledge for accurate Sentiment Analysis (SA). To address these challenges, this study explores how Large Language Models (LLMs) can integrate expert knowledge through in-context learning for SA, providing a scalable solution for sophisticated health data analysis. Specifically, we develop a structured codebook that systematically encodes expert interpretation guidelines, enabling LLMs to apply domain-specific knowledge through targeted prompting rather than extensive training. Six GPT models validated alongside DeepSeek and LLaMA 3.1 are compared with pre-trained language models (BioBERT variants) and lexicon-based methods, using 400 expert-annotated posts from two OHCs. LLMs achieve superior performance while demonstrating expert-level agreement. This high agreement, with no statistically significant difference from inter-expert agreement levels, suggests knowledge integration beyond surface-level pattern recognition. The consistent performance across diverse LLM models, supported by in-context learning, offers a promising solution for digital health analytics. This approach addresses the critical challenge of expert knowledge shortage in digital health research, enabling real-time, expert-quality analysis for patient monitoring, intervention assessment, and evidence-based health strategies.