Abstract:Social media serves as a critical medium in modern politics because it both reflects politicians' ideologies and facilitates communication with younger generations. We present MultiParTweet, a multilingual tweet corpus from X that connects politicians' social media discourse with German political corpus GerParCor, thereby enabling comparative analyses between online communication and parliamentary debates. MultiParTweet contains 39 546 tweets, including 19 056 media items. Furthermore, we enriched the annotation with nine text-based models and one vision-language model (VLM) to annotate MultiParTweet with emotion, sentiment, and topic annotations. Moreover, the automated annotations are evaluated against a manually annotated subset. MultiParTweet can be reconstructed using our tool, TTLABTweetCrawler, which provides a framework for collecting data from X. To demonstrate a methodological demonstration, we examine whether the models can predict each other using the outputs of the remaining models. In summary, we provide MultiParTweet, a resource integrating automatic text and media-based annotations validated with human annotations, and TTLABTweetCrawler, a general-purpose X data collection tool. Our analysis shows that the models are mutually predictable. In addition, VLM-based annotation were preferred by human annotators, suggesting that multimodal representations align more with human interpretation.




Abstract:If sentiment analysis tools were valid classifiers, one would expect them to provide comparable results for sentiment classification on different kinds of corpora and for different languages. In line with results of previous studies we show that sentiment analysis tools disagree on the same dataset. Going beyond previous studies we show that the sentiment tool used for sentiment annotation can even be predicted from its outcome, revealing an algorithmic bias of sentiment analysis. Based on Twitter, Wikipedia and different news corpora from the English, German and French languages, our classifiers separate sentiment tools with an averaged F1-score of 0.89 (for the English corpora). We therefore warn against taking sentiment annotations as face value and argue for the need of more and systematic NLP evaluation studies.




Abstract:Parliamentary debates represent a large and partly unexploited treasure trove of publicly accessible texts. In the German-speaking area, there is a certain deficit of uniformly accessible and annotated corpora covering all German-speaking parliaments at the national and federal level. To address this gap, we introduce the German Parliament Corpus (GerParCor). GerParCor is a genre-specific corpus of (predominantly historical) German-language parliamentary protocols from three centuries and four countries, including state and federal level data. In addition, GerParCor contains conversions of scanned protocols and, in particular, of protocols in Fraktur converted via an OCR process based on Tesseract. All protocols were preprocessed by means of the NLP pipeline of spaCy3 and automatically annotated with metadata regarding their session date. GerParCor is made available in the XMI format of the UIMA project. In this way, GerParCor can be used as a large corpus of historical texts in the field of political communication for various tasks in NLP.