Fine-grained opinion analysis of text provides a detailed understanding of expressed sentiments, including the addressed entity. Although this level of detail is sound, it requires considerable human effort and substantial cost to annotate opinions in datasets for training models, especially across diverse domains and real-world applications. We explore the feasibility of LLMs as automatic annotators for fine-grained opinion analysis, addressing the shortage of domain-specific labelled datasets. In this work, we use a declarative annotation pipeline. This approach reduces the variability of manual prompt engineering when using LLMs to identify fine-grained opinion spans in text. We also present a novel methodology for an LLM to adjudicate multiple labels and produce final annotations. After trialling the pipeline with models of different sizes for the Aspect Sentiment Triplet Extraction (ASTE) and Aspect-Category-Opinion-Sentiment (ACOS) analysis tasks, we show that LLMs can serve as automatic annotators and adjudicators, achieving high Inter-Annotator Agreement across individual LLM-based annotators. This reduces the cost and human effort needed to create these fine-grained opinion-annotated datasets.
Large Language Models (LLMs) generate fluent text, yet whether they truly understand the world or merely produce plausible language about it remains contested. We propose an architectural principle, the mouth is not the brain, that explicitly separates world models from language models. Our architecture comprises three components: a Deep Boltzmann Machine (DBM) that captures domain structure as an energy-based world model, an adapter that projects latent belief states into embedding space, and a frozen GPT-2 that provides linguistic competence without domain knowledge. We instantiate this framework in the consumer review domain using Amazon smartphone reviews. Experiments demonstrate that (1) conditioning through the world model yields significantly higher sentiment correlation, lower perplexity, and greater semantic similarity compared to prompt-based generation alone; (2) the DBM's energy function distinguishes coherent from incoherent market configurations, assigning higher energy to implausible brand-price combinations; and (3) interventions on specific attributes propagate causally to generated text with intervened outputs exhibiting distributions statistically consistent with naturally occurring samples sharing the target configuration. These findings suggest that even small-scale language models can achieve consistent, controllable generation when connected to an appropriate world model, providing empirical support for separating linguistic competence from world understanding.
Large language model (LLM) agents often exhibit abrupt shifts in tone and persona during extended interaction, reflecting the absence of explicit temporal structure governing agent-level state. While prior work emphasizes turn-local sentiment or static emotion classification, the role of explicit affective dynamics in shaping long-horizon agent behavior remains underexplored. This work investigates whether imposing dynamical structure on an external affective state can induce temporal coherence and controlled recovery in multi-turn dialogue. We introduce an agent-level affective subsystem that maintains a continuous Valence-Arousal-Dominance (VAD) state external to the language model and governed by first- and second-order update rules. Instantaneous affective signals are extracted using a fixed, memoryless estimator and integrated over time via exponential smoothing or momentum-based dynamics. The resulting affective state is injected back into generation without modifying model parameters. Using a fixed 25-turn dialogue protocol, we compare stateless, first-order, and second-order affective dynamics. Stateless agents fail to exhibit coherent trajectories or recovery, while state persistence enables delayed responses and reliable recovery. Second-order dynamics introduce affective inertia and hysteresis that increase with momentum, revealing a trade-off between stability and responsiveness.
This paper addresses stock price movement prediction by leveraging LLM-based news sentiment analysis. Earlier works have largely focused on proposing and assessing sentiment analysis models and stock movement prediction methods, however, separately. Although promising results have been achieved, a clear and in-depth understanding of the benefit of the news sentiment to this task, as well as a comprehensive assessment of different architecture types in this context, is still lacking. Herein, we conduct an evaluation study that compares 3 different LLMs, namely, DeBERTa, RoBERTa and FinBERT, for sentiment-driven stock prediction. Our results suggest that DeBERTa outperforms the other two models with an accuracy of 75% and that an ensemble model that combines the three models can increase the accuracy to about 80%. Also, we see that sentiment news features can benefit (slightly) some stock market prediction models, i.e., LSTM-, PatchTST- and tPatchGNN-based classifiers and PatchTST- and TimesNet-based regression tasks models.
We introduce DNIPRO, a novel longitudinal corpus of 246K news articles documenting the Russo-Ukrainian war from Feb 2022 to Aug 2024, spanning eleven media outlets across five nation states (Russia, Ukraine, U.S., U.K., and China) and three languages (English, Russian, and Mandarin Chinese). This multilingual resource features consistent and comprehensive metadata, and multiple types of annotation with rigorous human evaluations for downstream tasks relevant to systematic transnational analyses of contentious wartime discourse. DNIPRO's distinctive value lies in its inclusion of competing geopolitical perspectives, making it uniquely suited for studying narrative divergence, media framing, and information warfare. To demonstrate its utility, we include use case experiments using stance detection, sentiment analysis, topical framing, and contradiction analysis of major conflict events within the larger war. Our explorations reveal how outlets construct competing realities, with coverage exhibiting polarized interpretations that reflect geopolitical interests. Beyond supporting computational journalism research, DNIPRO provides a foundational resource for understanding how conflicting narratives emerge and evolve across global information ecosystems.
Misinformation and fake news have become a pressing societal challenge, driving the need for reliable automated detection methods. Prior research has highlighted sentiment as an important signal in fake news detection, either by analyzing which sentiments are associated with fake news or by using sentiment and emotion features for classification. However, this poses a vulnerability since adversaries can manipulate sentiment to evade detectors especially with the advent of large language models (LLMs). A few studies have explored adversarial samples generated by LLMs, but they mainly focus on stylistic features such as writing style of news publishers. Thus, the crucial vulnerability of sentiment manipulation remains largely unexplored. In this paper, we investigate the robustness of state-of-the-art fake news detectors under sentiment manipulation. We introduce AdSent, a sentiment-robust detection framework designed to ensure consistent veracity predictions across both original and sentiment-altered news articles. Specifically, we (1) propose controlled sentiment-based adversarial attacks using LLMs, (2) analyze the impact of sentiment shifts on detection performance. We show that changing the sentiment heavily impacts the performance of fake news detection models, indicating biases towards neutral articles being real, while non-neutral articles are often classified as fake content. (3) We introduce a novel sentiment-agnostic training strategy that enhances robustness against such perturbations. Extensive experiments on three benchmark datasets demonstrate that AdSent significantly outperforms competitive baselines in both accuracy and robustness, while also generalizing effectively to unseen datasets and adversarial scenarios.
The use of Transfer Learning & Transformers has steadily improved accuracy and has significantly contributed in solving complex computation problems. However, this transformer led accuracy improvement in Applied AI Analytics specifically in sentiment analytics comes with the dark side. It is observed during experiments that a lot of these improvements in transformer led accuracy of one class of sentiment has been at the cost of polarization of another class of sentiment and the failing of neutrality. This lack of neutrality poses an acute problem in the Applied NLP space, which relies heavily on the computational outputs of sentiment analytics for reliable industry ready tasks.
Human cognition exhibits strong circadian modulation, yet its influence on high-dimensional semantic behavior remains poorly understood. Using large-scale Reddit data, we quantify time-of-day variation in language use by embedding text into a pretrained transformer model and measuring semantic entropy as an index of linguistic exploration-exploitation, for which we show a robust circadian rhythmicity that could be entrained by seasonal light cues. Distinguishing between local and global semantic entropy reveals a systematic temporal dissociation: local semantic exploration peaks in the morning, reflecting broader exploration of semantic space, whereas global semantic diversity peaks later in the day as submissions accumulate around already established topics, consistent with "rich-get-richer" dynamics. These patterns are not explained by sentiment or affective valence, indicating that semantic exploration captures a cognitive dimension distinct from mood. The observed temporal structure aligns with known diurnal patterns in neuromodulatory systems, suggesting that biological circadian rhythms extend to the semantic domain.
Repeated exposure to violence and abusive content in music and song content can influence listeners' emotions and behaviours, potentially normalising aggression or reinforcing harmful stereotypes. In this study, we explore the use of generative artificial intelligence (GenAI) and Large Language Models (LLMs) to automatically transform abusive words (vocal delivery) and lyrical content in popular music. Rather than simply muting or replacing a single word, our approach transforms the tone, intensity, and sentiment, thus not altering just the lyrics, but how it is expressed. We present a comparative analysis of four selected English songs and their transformed counterparts, evaluating changes through both acoustic and sentiment-based lenses. Our findings indicate that Gen-AI significantly reduces vocal aggressiveness, with acoustic analysis showing improvements in Harmonic to Noise Ratio, Cepstral Peak Prominence, and Shimmer. Sentiment analysis reduced aggression by 63.3-85.6\% across artists, with major improvements in chorus sections (up to 88.6\% reduction). The transformed versions maintained musical coherence while mitigating harmful content, offering a promising alternative to traditional content moderation that avoids triggering the "forbidden fruit" effect, where the censored content becomes more appealing simply because it is restricted. This approach demonstrates the potential for GenAI to create safer listening experiences while preserving artistic expression.
Qualitative research often contains personal, contextual, and organizational details that pose privacy risks if not handled appropriately. Manual anonymization is time-consuming, inconsistent, and frequently omits critical identifiers. Existing automated tools tend to rely on pattern matching or fixed rules, which fail to capture context and may alter the meaning of the data. This study uses local LLMs to build a reliable, repeatable, and context-aware anonymization process for detecting and anonymizing sensitive data in qualitative transcripts. We introduce a Structured Framework for Adaptive Anonymizer (SFAA) that includes three steps: detection, classification, and adaptive anonymization. The SFAA incorporates four anonymization strategies: rule-based substitution, context-aware rewriting, generalization, and suppression. These strategies are applied based on the identifier type and the risk level. The identifiers handled by the SFAA are guided by major international privacy and research ethics standards, including the GDPR, HIPAA, and OECD guidelines. This study followed a dual-method evaluation that combined manual and LLM-assisted processing. Two case studies were used to support the evaluation. The first includes 82 face-to-face interviews on gamification in organizations. The second involves 93 machine-led interviews using an AI-powered interviewer to test LLM awareness and workplace privacy. Two local models, LLaMA and Phi were used to evaluate the performance of the proposed framework. The results indicate that the LLMs found more sensitive data than a human reviewer. Phi outperformed LLaMA in finding sensitive data, but made slightly more errors. Phi was able to find over 91% of the sensitive data and 94.8% kept the same sentiment as the original text, which means it was very accurate, hence, it does not affect the analysis of the qualitative data.