What is autonomous cars? Autonomous cars are self-driving vehicles that use artificial intelligence (AI) and sensors to navigate and operate without human intervention, using high-resolution cameras and lidars that detect what happens in the car's immediate surroundings. They have the potential to revolutionize transportation by improving safety, efficiency, and accessibility.
Papers and Code
Jun 07, 2025
Abstract:Predicting the motion of other agents in a scene is highly relevant for autonomous driving, as it allows a self-driving car to anticipate. Inspired by the success of decoder-only models for language modeling, we propose DONUT, a Decoder-Only Network for Unrolling Trajectories. Different from existing encoder-decoder forecasting models, we encode historical trajectories and predict future trajectories with a single autoregressive model. This allows the model to make iterative predictions in a consistent manner, and ensures that the model is always provided with up-to-date information, enhancing the performance. Furthermore, inspired by multi-token prediction for language modeling, we introduce an 'overprediction' strategy that gives the network the auxiliary task of predicting trajectories at longer temporal horizons. This allows the model to better anticipate the future, and further improves the performance. With experiments, we demonstrate that our decoder-only approach outperforms the encoder-decoder baseline, and achieves new state-of-the-art results on the Argoverse 2 single-agent motion forecasting benchmark.
Via

Jun 13, 2025
Abstract:In recent years, the development of interconnected devices has expanded in many fields, from infotainment to education and industrial applications. This trend has been accelerated by the increased number of sensors and accessibility to powerful hardware and software. One area that significantly benefits from these advancements is Teleoperated Driving (TD). In this scenario, a controller drives safely a vehicle from remote leveraging sensors data generated onboard the vehicle, and exchanged via Vehicle-to-Everything (V2X) communications. In this work, we tackle the problem of detecting the presence of cars and pedestrians from point cloud data to enable safe TD operations. More specifically, we exploit the SELMA dataset, a multimodal, open-source, synthetic dataset for autonomous driving, that we expanded by including the ground-truth bounding boxes of 3D objects to support object detection. We analyze the performance of state-of-the-art compression algorithms and object detectors under several metrics, including compression efficiency, (de)compression and inference time, and detection accuracy. Moreover, we measure the impact of compression and detection on the V2X network in terms of data rate and latency with respect to 3GPP requirements for TD applications.
* Submitted to IEEE Transactions on Intelligent Transportation Systems
Via

Jun 13, 2025
Abstract:Despite rapid advances in autonomous driving, current autonomous vehicles (AVs) lack effective bidirectional communication with occupants, limiting personalization and recovery from immobilization. This reduces comfort and trust, potentially slowing broader AV adoption. We propose PACE-ADS (Psychology and Cognition Enabled Automated Driving Systems), a human-centered autonomy framework that enables AVs to sense, interpret, and respond to both external traffic and internal occupant states. PACE-ADS comprises three foundation model-based agents: a Driver Agent that analyzes the driving context, a Psychologist Agent that interprets occupant psychological signals (e.g., EEG, heart rate, facial expressions) and cognitive commands (e.g., speech), and a Coordinator Agent that integrates these inputs to produce high-level behavior decisions and operational parameters. Rather than replacing existing AV modules, PACE-ADS complements them by operating at the behavioral level, delegating low-level control to native AV systems. This separation enables closed-loop adaptation and supports integration across diverse platforms. We evaluate PACE-ADS in simulation across varied scenarios involving traffic lights, pedestrians, work zones, and car following. Results show that PACE-ADS adapts driving styles to occupant states, improves ride comfort, and enables safe recovery from immobilization via autonomous reasoning or human guidance. Our findings highlight the promise of LLM-based frameworks for bridging the gap between machine autonomy and human-centered driving.
* 10 figures,29 pages, one colummn
Via

May 08, 2025
Abstract:Traffic congestion has long been an ubiquitous problem that is exacerbating with the rapid growth of megacities. In this proof-of-concept work we study intrinsic motivation, implemented via the empowerment principle, to control autonomous car behavior to improve traffic flow. In standard models of traffic dynamics, self-organized traffic jams emerge spontaneously from the individual behavior of cars, affecting traffic over long distances. Our novel car behavior strategy improves traffic flow while still being decentralized and using only locally available information without explicit coordination. Decentralization is essential for various reasons, not least to be able to absorb robustly substantial levels of uncertainty. Our scenario is based on the well-established traffic dynamics model, the Nagel-Schreckenberg cellular automaton. In a fraction of the cars in this model, we substitute the default behavior by empowerment, our intrinsic motivation-based method. This proposed model significantly improves overall traffic flow, mitigates congestion, and reduces the average traffic jam time.
* Proc. IEEE Int. Conf. on Intelligent Transportation Systems, 2024,
pp. 1360-1367
* 9 pages, 6 figures, Published in the Proceedings of the 2024 IEEE
27th International Conference on Intelligent Transportation Systems (ITSC)
Via

May 15, 2025
Abstract:Autonomous driving technology is progressively transforming traditional car driving methods, marking a significant milestone in modern transportation. Object detection serves as a cornerstone of autonomous systems, playing a vital role in enhancing driving safety, enabling autonomous functionality, improving traffic efficiency, and facilitating effective emergency responses. However, current technologies such as radar for environmental perception, cameras for road perception, and vehicle sensor networks face notable challenges, including high costs, vulnerability to weather and lighting conditions, and limited resolution.To address these limitations, this paper presents an improved autonomous target detection network based on YOLOv8. By integrating structural reparameterization technology, a bidirectional pyramid structure network model, and a novel detection pipeline into the YOLOv8 framework, the proposed approach achieves highly efficient and precise detection of multi-scale, small, and remote objects. Experimental results demonstrate that the enhanced model can effectively detect both large and small objects with a detection accuracy of 65%, showcasing significant advancements over traditional methods.This improved model holds substantial potential for real-world applications and is well-suited for autonomous driving competitions, such as the Formula Student Autonomous China (FSAC), particularly excelling in scenarios involving single-target and small-object detection.
* Accepted by the 5th International Conference on Signal Processing and
Machine Learning (CONF-SPML 2025), to appear in Applied and Computational
Engineering
Via

May 08, 2025
Abstract:The safety of autonomous cars has come under scrutiny in recent years, especially after 16 documented incidents involving Teslas (with autopilot engaged) crashing into parked emergency vehicles (police cars, ambulances, and firetrucks). While previous studies have revealed that strong light sources often introduce flare artifacts in the captured image, which degrade the image quality, the impact of flare on object detection performance remains unclear. In this research, we unveil PaniCar, a digital phenomenon that causes an object detector's confidence score to fluctuate below detection thresholds when exposed to activated emergency vehicle lighting. This vulnerability poses a significant safety risk, and can cause autonomous vehicles to fail to detect objects near emergency vehicles. In addition, this vulnerability could be exploited by adversaries to compromise the security of advanced driving assistance systems (ADASs). We assess seven commercial ADASs (Tesla Model 3, "manufacturer C", HP, Pelsee, AZDOME, Imagebon, Rexing), four object detectors (YOLO, SSD, RetinaNet, Faster R-CNN), and 14 patterns of emergency vehicle lighting to understand the influence of various technical and environmental factors. We also evaluate four SOTA flare removal methods and show that their performance and latency are insufficient for real-time driving constraints. To mitigate this risk, we propose Caracetamol, a robust framework designed to enhance the resilience of object detectors against the effects of activated emergency vehicle lighting. Our evaluation shows that on YOLOv3 and Faster RCNN, Caracetamol improves the models' average confidence of car detection by 0.20, the lower confidence bound by 0.33, and reduces the fluctuation range by 0.33. In addition, Caracetamol is capable of processing frames at a rate of between 30-50 FPS, enabling real-time ADAS car detection.
Via

Jun 11, 2025
Abstract:Autonomous racing has emerged as a crucial testbed for autonomous driving algorithms, necessitating a simulation environment for both vehicle dynamics and sensor behavior. Striking the right balance between vehicle dynamics and sensor accuracy is crucial for pushing vehicles to their performance limits. However, autonomous racing developers often face a trade-off between accurate vehicle dynamics and high-fidelity sensor simulations. This paper introduces R-CARLA, an enhancement of the CARLA simulator that supports holistic full-stack testing, from perception to control, using a single system. By seamlessly integrating accurate vehicle dynamics with sensor simulations, opponents simulation as NPCs, and a pipeline for creating digital twins from real-world robotic data, R-CARLA empowers researchers to push the boundaries of autonomous racing development. Furthermore, it is developed using CARLA's rich suite of sensor simulations. Our results indicate that incorporating the proposed digital-twin framework into R-CARLA enables more realistic full-stack testing, demonstrating a significant reduction in the Sim-to-Real gap of car dynamics simulation by 42% and by 82% in the case of sensor simulation across various testing scenarios.
Via

Apr 29, 2025
Abstract:Recent advances in deep learning have enabled the development of autonomous systems that use deep neural networks for perception. Formal verification of these systems is challenging due to the size and complexity of the perception DNNs as well as hard-to-quantify, changing environment conditions. To address these challenges, we propose a probabilistic verification framework for autonomous systems based on the following key concepts: (1) Scenario-based Modeling: We decompose the task (e.g., car navigation) into a composition of scenarios, each representing a different environment condition. (2) Probabilistic Abstractions: For each scenario, we build a compact abstraction of perception based on the DNN's performance on an offline dataset that represents the scenario's environment condition. (3) Symbolic Reasoning and Acceleration: The abstractions enable efficient compositional verification of the autonomous system via symbolic reasoning and a novel acceleration proof rule that bounds the error probability of the system under arbitrary variations of environment conditions. We illustrate our approach on two case studies: an experimental autonomous system that guides airplanes on taxiways using high-dimensional perception DNNs and a simulation model of an F1Tenth autonomous car using LiDAR observations.
Via

May 29, 2025
Abstract:Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.
Via

Apr 04, 2025
Abstract:This article presents a formal model and formal safety proofs for the ABZ'25 case study in differential dynamic logic (dL). The case study considers an autonomous car driving on a highway avoiding collisions with neighbouring cars. Using KeYmaera X's dL implementation, we prove absence of collision on an infinite time horizon which ensures that safety is preserved independently of trip length. The safety guarantees hold for time-varying reaction time and brake force. Our dL model considers the single lane scenario with cars ahead or behind. We demonstrate that dL with its tools is a rigorous foundation for runtime monitoring, shielding, and neural network verification. Doing so sheds light on inconsistencies between the provided specification and simulation environment highway-env of the ABZ'25 study. We attempt to fix these inconsistencies and uncover numerous counterexamples which also indicate issues in the provided reinforcement learning environment.
* 21 pages, 6 figures; Accepted at the 11th International Conference on
Rigorous State Based Methods (ABZ'25)
Via
