Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
FinOps (Finance + Operations) represents an operational framework and cultural practice which maximizes cloud business value through collaborative financial accountability across engineering, finance, and business teams. FinOps practitioners face a fundamental challenge: billing data arrives in heterogeneous formats, taxonomies, and metrics from multiple cloud providers and internal systems which eventually lead to synthesizing actionable insights, and making time-sensitive decisions. To address this challenge, we propose leveraging autonomous, goal-driven AI agents for FinOps automation. In this paper, we built a FinOps agent for a typical use-case for IT infrastructure and cost optimization. We built a system simulating a realistic end-to-end industry process starting with retrieving data from various sources to consolidating and analyzing the data to generate recommendations for optimization. We defined a set of metrics to evaluate our agent using several open-source and close-source language models and it shows that the agent was able to understand, plan, and execute tasks as well as an actual FinOps practitioner.
Predictive modeling has the potential to enhance human decision-making. However, many predictive models fail in practice due to problematic problem formulation in cases where the prediction target is an abstract concept or construct and practitioners need to define an appropriate target variable as a proxy to operationalize the construct of interest. The choice of an appropriate proxy target variable is rarely self-evident in practice, requiring both domain knowledge and iterative data modeling. This process is inherently collaborative, involving both domain experts and data scientists. In this work, we explore how human-machine teaming can support this process by accelerating iterations while preserving human judgment. We study the impact of two human-machine teaming strategies on proxy construction: 1) relevance-first: humans leading the process by selecting relevant proxies, and 2) performance-first: machines leading the process by recommending proxies based on predictive performance. Based on a controlled user study of a proxy construction task (N = 20), we show that the performance-first strategy facilitated faster iterations and decision-making, but also biased users towards well-performing proxies that are misaligned with the application goal. Our study highlights the opportunities and risks of human-machine teaming in operationalizing machine learning target variables, yielding insights for future research to explore the opportunities and mitigate the risks.
Large Language Models (LLMs) are widely used in generative applications such as chatting, code generation, and reasoning. However, many realworld workloads such as classification, question answering, recommendation, and text embedding rely solely on the prefill stage of inference, where the model encodes input sequences without performing autoregressive decoding. In these prefill only scenarios, the self-attention computation becomes the primary performance bottleneck due to its quadratic complexity with respect to sequence length. In this paper, we observe that semantically different sentences often produce similar attention maps across layers and heads. Building on this insight, we propose AttnCache, a framework that accelerates the prefill stage of LLM inference by retrieving and reusing similar attention maps. Based on an attention map memorization database, AttnCache employs efficient caching and similarity search techniques to identify and reuse pre-cached attention maps during inference, thereby reducing the computational overhead of self-attention. Experimental results show that AttnCache achieves an average of 1.2x end-to-end and 2x attention speedup on CPU, and 1.6x end-to-end and 3x attention speedup on GPU, with negligible accuracy degradation.
With the rapid advancement of internet technologies, network services have become critical for delivering diverse and reliable applications to users. However, the exponential growth in the number of available services has resulted in many similar offerings, posing significant challenges in selecting optimal services. Predicting Quality of Service (QoS) accurately thus becomes a fundamental prerequisite for ensuring reliability and user satisfaction. However, existing QoS prediction methods often fail to capture rich contextual information and exhibit poor performance under extreme data sparsity and structural noise. To bridge this gap, we propose a novel architecture, QoSMGAA, specifically designed to enhance prediction accuracy in complex and noisy network service environments. QoSMGAA integrates a multi-order attention mechanism to aggregate extensive contextual data and predict missing QoS values effectively. Additionally, our method incorporates adversarial neural networks to perform autoregressive supervised learning based on transformed interaction matrices. To capture complex, higher-order interactions among users and services, we employ a discrete sampling technique leveraging the Gumbel-Softmax method to generate informative negative samples. Comprehensive experimental validation conducted on large-scale real-world datasets demonstrates that our proposed model significantly outperforms existing baseline methods, highlighting its strong potential for practical deployment in service selection and recommendation scenarios.
The core task of recommender systems is to learn user preferences from historical user-item interactions. With the rapid development of large language models (LLMs), recent research has explored leveraging the reasoning capabilities of LLMs to enhance rating prediction tasks. However, existing distillation-based methods suffer from limitations such as the teacher model's insufficient recommendation capability, costly and static supervision, and superficial transfer of reasoning ability. To address these issues, this paper proposes RecZero, a reinforcement learning (RL)-based recommendation paradigm that abandons the traditional multi-model and multi-stage distillation approach. Instead, RecZero trains a single LLM through pure RL to autonomously develop reasoning capabilities for rating prediction. RecZero consists of two key components: (1) "Think-before-Recommendation" prompt construction, which employs a structured reasoning template to guide the model in step-wise analysis of user interests, item features, and user-item compatibility; and (2) rule-based reward modeling, which adopts group relative policy optimization (GRPO) to compute rewards for reasoning trajectories and optimize the LLM. Additionally, the paper explores a hybrid paradigm, RecOne, which combines supervised fine-tuning with RL, initializing the model with cold-start reasoning samples and further optimizing it with RL. Experimental results demonstrate that RecZero and RecOne significantly outperform existing baseline methods on multiple benchmark datasets, validating the superiority of the RL paradigm in achieving autonomous reasoning-enhanced recommender systems.
Next Point-of-Interest (POI) recommendation is a critical task in modern Location-Based Social Networks (LBSNs), aiming to model the complex decision-making process of human mobility to provide personalized recommendations for a user's next check-in location. Existing POI recommendation models, predominantly based on Graph Neural Networks and sequential models, have been extensively studied. However, these models face a fundamental limitation: they struggle to simultaneously capture the inherent hierarchical structure of spatial choices and the dynamics and irregular shifts of user-specific temporal contexts. To overcome this limitation, we propose GTR-Mamba, a novel framework for cross-manifold conditioning and routing. GTR-Mamba leverages the distinct advantages of different mathematical spaces for different tasks: it models the static, tree-like preference hierarchies in hyperbolic geometry, while routing the dynamic sequence updates to a novel Mamba layer in the computationally stable and efficient Euclidean tangent space. This process is coordinated by a cross-manifold channel that fuses spatio-temporal information to explicitly steer the State Space Model (SSM), enabling flexible adaptation to contextual changes. Extensive experiments on three real-world datasets demonstrate that GTR-Mamba consistently outperforms state-of-the-art baseline models in next POI recommendation.
The powerful reasoning and generative capabilities of large language models (LLMs) have inspired researchers to apply them to reasoning-based recommendation tasks, which require in-depth reasoning about user interests and the generation of recommended items. However, previous reasoning-based recommendation methods have typically performed inference within the language space alone, without incorporating the actual item space. This has led to over-interpreting user interests and deviating from real items. Towards this research gap, we propose performing multiple rounds of grounding during inference to help the LLM better understand the actual item space, which could ensure that its reasoning remains aligned with real items. Furthermore, we introduce a user agent that provides feedback during each grounding step, enabling the LLM to better recognize and adapt to user interests. Comprehensive experiments conducted on three Amazon review datasets demonstrate the effectiveness of incorporating multiple groundings and feedback. These findings underscore the critical importance of reasoning within the actual item space, rather than being confined to the language space, for recommendation tasks.




Graph-based recommender systems are commonly trained in transductive settings, which limits their applicability to new users, items, or datasets. We propose NBF-Rec, a graph-based recommendation model that supports inductive transfer learning across datasets with disjoint user and item sets. Unlike conventional embedding-based methods that require retraining for each domain, NBF-Rec computes node embeddings dynamically at inference time. We evaluate the method on seven real-world datasets spanning movies, music, e-commerce, and location check-ins. NBF-Rec achieves competitive performance in zero-shot settings, where no target domain data is used for training, and demonstrates further improvements through lightweight fine-tuning. These results show that inductive transfer is feasible in graph-based recommendation and that interaction-level message passing supports generalization across datasets without requiring aligned users or items.
Accurate symptom-to-disease classification and clinically grounded treatment recommendations remain challenging, particularly in heterogeneous patient settings with high diagnostic risk. Existing large language model (LLM)-based systems often lack medical grounding and fail to quantify uncertainty, resulting in unsafe outputs. We propose CLIN-LLM, a safety-constrained hybrid pipeline that integrates multimodal patient encoding, uncertainty-calibrated disease classification, and retrieval-augmented treatment generation. The framework fine-tunes BioBERT on 1,200 clinical cases from the Symptom2Disease dataset and incorporates Focal Loss with Monte Carlo Dropout to enable confidence-aware predictions from free-text symptoms and structured vitals. Low-certainty cases (18%) are automatically flagged for expert review, ensuring human oversight. For treatment generation, CLIN-LLM employs Biomedical Sentence-BERT to retrieve top-k relevant dialogues from the 260,000-sample MedDialog corpus. The retrieved evidence and patient context are fed into a fine-tuned FLAN-T5 model for personalized treatment generation, followed by post-processing with RxNorm for antibiotic stewardship and drug-drug interaction (DDI) screening. CLIN-LLM achieves 98% accuracy and F1 score, outperforming ClinicalBERT by 7.1% (p < 0.001), with 78% top-5 retrieval precision and a clinician-rated validity of 4.2 out of 5. Unsafe antibiotic suggestions are reduced by 67% compared to GPT-5. These results demonstrate CLIN-LLM's robustness, interpretability, and clinical safety alignment. The proposed system provides a deployable, human-in-the-loop decision support framework for resource-limited healthcare environments. Future work includes integrating imaging and lab data, multilingual extensions, and clinical trial validation.
As information technology advances, education is moving from one-size-fits-all instruction toward personalized learning. However, most methods handle modeling, item selection, and feedback in isolation rather than as a closed loop. This leads to coarse or opaque student models, assumption-bound adaptivity that ignores diagnostic posteriors, and generic, non-actionable feedback. To address these limitations, this paper presents an end-to-end personalized learning agent, EduLoop-Agent, which integrates a Neural Cognitive Diagnosis model (NCD), a Bounded-Ability Estimation Computerized Adaptive Testing strategy (BECAT), and large language models (LLMs). The NCD module provides fine-grained estimates of students' mastery at the knowledge-point level; BECAT dynamically selects subsequent items to maximize relevance and learning efficiency; and LLMs convert diagnostic signals into structured, actionable feedback. Together, these components form a closed-loop framework of ``Diagnosis--Recommendation--Feedback.'' Experiments on the ASSISTments dataset show that the NCD module achieves strong performance on response prediction while yielding interpretable mastery assessments. The adaptive recommendation strategy improves item relevance and personalization, and the LLM-based feedback offers targeted study guidance aligned with identified weaknesses. Overall, the results indicate that the proposed design is effective and practically deployable, providing a feasible pathway to generating individualized learning trajectories in intelligent education.