Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Speech conveys not only linguistic information but also rich non-verbal vocal events such as laughing and crying. While semantic transcription is well-studied, the precise localization of non-verbal events remains a critical yet under-explored challenge. Current methods suffer from insufficient task definitions with limited category coverage and ambiguous temporal granularity. They also lack standardized evaluation frameworks, hindering the development of downstream applications. To bridge this gap, we first develop a refined taxonomy of 21 vocal events, with a new categorization into discrete (standalone) versus continuous (mixed with speech) types. Based on the refined taxonomy, we introduce WESR-Bench, an expert-annotated evaluation set (900+ utterances) with a novel position-aware protocol that disentangles ASR errors from event detection, enabling precise localization measurement for both discrete and continuous events. We also build a strong baseline by constructing a 1,700+ hour corpus, and train specialized models, surpassing both open-source audio-language models and commercial APIs while preserving ASR quality. We anticipate that WESR will serve as a foundational resource for future research in modeling rich, real-world auditory scenes.
This paper proposes an automatic speech recognition (ASR) model for hate speech using large language models (LLMs). The proposed method integrates the encoder of the ASR model with the decoder of the LLMs, enabling simultaneous transcription and censorship tasks to prevent the exposure of harmful content. Instruction tuning of the LLM to mask hate-related words with specific tokens requires an annotated hate speech dataset, which is limited. We generate text samples using an LLM with the Chain-of-Thought (CoT) prompting technique guided by cultural context and examples and then convert them into speech samples using a text-to-speech (TTS) system. However, some of them contain non-hate speech samples with hate-related words, which degrades the censorship performance. This paper filters the samples which text classification models correctly label as hate content. By adjusting the threshold for the number of correct answer models, we can control the level of hate in the generated dataset, allowing us to train the LLMs through curriculum learning in a gradual manner. Experimental results show that the proposed method achieves a masking accuracy of 58.6\% for hate-related words, surpassing previous baselines. We also confirm that the curriculum training contributes to the efficiency of both transcription and censorship tasks.
Automatic speech recognition systems have achieved remarkable performance on fluent speech but continue to degrade significantly when processing stuttered speech, a limitation that is particularly acute for low-resource languages like Indonesian where specialized datasets are virtually non-existent. To overcome this scarcity, we propose a data augmentation framework that generates synthetic stuttered audio by injecting repetitions and prolongations into fluent text through a combination of rule-based transformations and large language models followed by text-to-speech synthesis. We apply this synthetic data to fine-tune a pre-trained Indonesian Whisper model using transfer learning, enabling the architecture to adapt to dysfluent acoustic patterns without requiring large-scale real-world recordings. Our experiments demonstrate that this targeted synthetic exposure consistently reduces recognition errors on stuttered speech while maintaining performance on fluent segments, validating the utility of synthetic data pipelines for developing more inclusive speech technologies in under-represented languages.
Multi-speaker automatic speech recognition (MASR) aims to predict ''who spoke when and what'' from multi-speaker speech, a key technology for multi-party dialogue understanding. However, most existing approaches decouple temporal modeling and speaker modeling when addressing ''when'' and ''who'': some inject speaker cues before encoding (e.g., speaker masking), which can cause irreversible information loss; others fuse identity by mixing speaker posteriors after encoding, which may entangle acoustic content with speaker identity. This separation is brittle under rapid turn-taking and overlapping speech, often leading to degraded performance. To address these limitations, we propose TellWhisper, a unified framework that jointly models speaker identity and temporal within the speech encoder. Specifically, we design TS-RoPE, a time-speaker rotary positional encoding: time coordinates are derived from frame indices, while speaker coordinates are derived from speaker activity and pause cues. By applying region-specific rotation angles, the model explicitly captures per-speaker continuity, speaker-turn transitions, and state dynamics, enabling the attention mechanism to simultaneously attend to ''when'' and ''who''. Moreover, to estimate frame-level speaker activity, we develop Hyper-SD, which casts speaker classification in hyperbolic space to enhance inter-class separation and refine speaker-activity estimates. Extensive experiments demonstrate the effectiveness of the proposed approach.
With the development of teleconferencing and in-vehicle voice assistants, far-field multi-speaker speech recognition has become a hot research topic. Recently, a multi-channel transformer (MCT) has been proposed, which demonstrates the ability of the transformer to model far-field acoustic environments. However, MCT cannot encode high-dimensional acoustic features for each speaker from mixed input audio because of the interference between speakers. Based on these, we propose the multi-channel multi-speaker transformer (M2Former) for far-field multi-speaker ASR in this paper. Experiments on the SMS-WSJ benchmark show that the M2Former outperforms the neural beamformer, MCT, dual-path RNN with transform-average-concatenate and multi-channel deep clustering based end-to-end systems by 9.2%, 14.3%, 24.9%, and 52.2% respectively, in terms of relative word error rate reduction.
Multilingual speech foundation models such as Whisper are trained on web-scale data, where data for each language consists of a myriad of regional varieties. However, different regional varieties often employ different scripts to write the same language, rendering speech recognition output also subject to non-determinism in the output script. To mitigate this problem, we show that script is linearly encoded in the activation space of multilingual speech models, and that modifying activations at inference time enables direct control over output script. We find the addition of such script vectors to activations at test time can induce script change even in unconventional language-script pairings (e.g. Italian in Cyrillic and Japanese in Latin script). We apply this approach to inducing post-hoc control over the script of speech recognition output, where we observe competitive performance across all model sizes of Whisper.
The emergence of large-scale automatic speech recognition (ASR) models such as Whisper has greatly expanded their adoption across diverse real-world applications. Ensuring robustness against even minor input perturbations is therefore critical for maintaining reliable performance in real-time environments. While prior work has mainly examined accuracy degradation under adversarial attacks, robustness with respect to efficiency remains largely unexplored. This narrow focus provides only a partial understanding of ASR model vulnerabilities. To address this gap, we conduct a comprehensive study of ASR robustness under multiple attack scenarios. We introduce MORE, a multi-objective repetitive doubling encouragement attack, which jointly degrades recognition accuracy and inference efficiency through a hierarchical staged repulsion-anchoring mechanism. Specifically, we reformulate multi-objective adversarial optimization into a hierarchical framework that sequentially achieves the dual objectives. To further amplify effectiveness, we propose a novel repetitive encouragement doubling objective (REDO) that induces duplicative text generation by maintaining accuracy degradation and periodically doubling the predicted sequence length. Overall, MORE compels ASR models to produce incorrect transcriptions at a substantially higher computational cost, triggered by a single adversarial input. Experiments show that MORE consistently yields significantly longer transcriptions while maintaining high word error rates compared to existing baselines, underscoring its effectiveness in multi-objective adversarial attack.
Running Automatic Speech Recognition (ASR) models on memory-constrained edge devices requires efficient compression. While layer-wise post-training quantization is effective, it suffers from error accumulation, especially in encoder-decoder architectures. Existing solutions like Quantization Error Propagation (QEP) are suboptimal for ASR due to the model's heterogeneity, processing acoustic features in the encoder while generating text in the decoder. To address this, we propose Fine-grained Alpha for Dynamic Quantization Error Propagation (FADE), which adaptively controls the trade-off between cross-layer error correction and local quantization. Experiments show that FADE significantly improves stability by reducing performance variance across runs, while simultaneously surpassing baselines in mean WER.
The rapid advancement of speech synthesis technologies, including text-to-speech (TTS) and voice conversion (VC), has intensified security and privacy concerns related to voice cloning. Recent defenses attempt to prevent unauthorized cloning by embedding protective perturbations into speech to obscure speaker identity while maintaining intelligibility. However, adversaries can apply advanced purification techniques to remove these perturbations, recover authentic acoustic characteristics, and regenerate cloneable voices. Despite the growing realism of such attacks, the robustness of existing defenses under adaptive purification remains insufficiently studied. Most existing purification methods are designed to counter adversarial noise in automatic speech recognition (ASR) systems rather than speaker verification or voice cloning pipelines. As a result, they fail to suppress the fine-grained acoustic cues that define speaker identity and are often ineffective against speaker verification attacks (SVA). To address these limitations, we propose Diffusion-Bridge (VocalBridge), a purification framework that learns a latent mapping from perturbed to clean speech in the EnCodec latent space. Using a time-conditioned 1D U-Net with a cosine noise schedule, the model enables efficient, transcript-free purification while preserving speaker-discriminative structure. We further introduce a Whisper-guided phoneme variant that incorporates lightweight temporal guidance without requiring ground-truth transcripts. Experimental results show that our approach consistently outperforms existing purification methods in recovering cloneable voices from protected speech. Our findings demonstrate the fragility of current perturbation-based defenses and highlight the need for more robust protection mechanisms against evolving voice-cloning and speaker verification threats.
Automatic speech recognition (ASR) for conversational code-switching speech remains challenging due to the scarcity of realistic, high-quality labeled speech data. This paper explores multilingual text-to-speech (TTS) models as an effective data augmentation technique to address this shortage. Specifically, we fine-tune the multilingual CosyVoice2 TTS model on the SEAME dataset to generate synthetic conversational Chinese-English code-switching speech, significantly increasing the quantity and speaker diversity of available training data. Our experiments demonstrate that augmenting real speech with synthetic speech reduces the mixed error rate (MER) from 12.1 percent to 10.1 percent on DevMan and from 17.8 percent to 16.0 percent on DevSGE, indicating consistent performance gains. These results confirm that multilingual TTS is an effective and practical tool for enhancing ASR robustness in low-resource conversational code-switching scenarios.