Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
The rapid advancement of speech synthesis technologies, including text-to-speech (TTS) and voice conversion (VC), has intensified security and privacy concerns related to voice cloning. Recent defenses attempt to prevent unauthorized cloning by embedding protective perturbations into speech to obscure speaker identity while maintaining intelligibility. However, adversaries can apply advanced purification techniques to remove these perturbations, recover authentic acoustic characteristics, and regenerate cloneable voices. Despite the growing realism of such attacks, the robustness of existing defenses under adaptive purification remains insufficiently studied. Most existing purification methods are designed to counter adversarial noise in automatic speech recognition (ASR) systems rather than speaker verification or voice cloning pipelines. As a result, they fail to suppress the fine-grained acoustic cues that define speaker identity and are often ineffective against speaker verification attacks (SVA). To address these limitations, we propose Diffusion-Bridge (VocalBridge), a purification framework that learns a latent mapping from perturbed to clean speech in the EnCodec latent space. Using a time-conditioned 1D U-Net with a cosine noise schedule, the model enables efficient, transcript-free purification while preserving speaker-discriminative structure. We further introduce a Whisper-guided phoneme variant that incorporates lightweight temporal guidance without requiring ground-truth transcripts. Experimental results show that our approach consistently outperforms existing purification methods in recovering cloneable voices from protected speech. Our findings demonstrate the fragility of current perturbation-based defenses and highlight the need for more robust protection mechanisms against evolving voice-cloning and speaker verification threats.
Speech-based machine learning systems are sensitive to noise, complicating reliable deployment in emotion recognition and voice pathology detection. We evaluate the robustness of a hybrid quantum machine learning model, quanvolutional neural networks (QNNs) against classical convolutional neural networks (CNNs) under four acoustic corruptions (Gaussian noise, pitch shift, temporal shift, and speed variation) in a clean-train/corrupted-test regime. Using AVFAD (voice pathology) and TESS (speech emotion), we compare three QNN models (Random, Basic, Strongly) to a simple CNN baseline (CNN-Base), ResNet-18 and VGG-16 using accuracy and corruption metrics (CE, mCE, RCE, RmCE), and analyze architectural factors (circuit complexity or depth, convergence) alongside per-emotion robustness. QNNs generally outperform the CNN-Base under pitch shift, temporal shift, and speed variation (up to 22% lower CE/RCE at severe temporal shift), while the CNN-Base remains more resilient to Gaussian noise. Among quantum circuits, QNN-Basic achieves the best overall robustness on AVFAD, and QNN-Random performs strongest on TESS. Emotion-wise, fear is most robust (80-90% accuracy under severe corruptions), neutral can collapse under strong Gaussian noise (5.5% accuracy), and happy is most vulnerable to pitch, temporal, and speed distortions. QNNs also converge up to six times faster than the CNN-Base. To our knowledge, this is a systematic study of QNN robustness for speech under common non-adversarial acoustic corruptions, indicating that shallow entangling quantum front-ends can improve noise resilience while sensitivity to additive noise remains a challenge.
The rapid advancements in artificial intelligence have significantly accelerated the adoption of speech recognition technology, leading to its widespread integration across various applications. However, this surge in usage also highlights a critical issue: audio data is highly vulnerable to unauthorized exposure and analysis, posing significant privacy risks for businesses and individuals. This paper introduces an Information-Obfuscation Reversible Adversarial Example (IO-RAE) framework, the pioneering method designed to safeguard audio privacy using reversible adversarial examples. IO-RAE leverages large language models to generate misleading yet contextually coherent content, effectively preventing unauthorized eavesdropping by humans and Automatic Speech Recognition (ASR) systems. Additionally, we propose the Cumulative Signal Attack technique, which mitigates high-frequency noise and enhances attack efficacy by targeting low-frequency signals. Our approach ensures the protection of audio data without degrading its quality or our ability. Experimental evaluations demonstrate the superiority of our method, achieving a targeted misguidance rate of 96.5% and a remarkable 100% untargeted misguidance rate in obfuscating target keywords across multiple ASR models, including a commercial black-box system from Google. Furthermore, the quality of the recovered audio, measured by the Perceptual Evaluation of Speech Quality score, reached 4.45, comparable to high-quality original recordings. Notably, the recovered audio processed by ASR systems exhibited an error rate of 0%, indicating nearly lossless recovery. These results highlight the practical applicability and effectiveness of our IO-RAE framework in protecting sensitive audio privacy.
Automatic speech recognition (ASR) for conversational code-switching speech remains challenging due to the scarcity of realistic, high-quality labeled speech data. This paper explores multilingual text-to-speech (TTS) models as an effective data augmentation technique to address this shortage. Specifically, we fine-tune the multilingual CosyVoice2 TTS model on the SEAME dataset to generate synthetic conversational Chinese-English code-switching speech, significantly increasing the quantity and speaker diversity of available training data. Our experiments demonstrate that augmenting real speech with synthetic speech reduces the mixed error rate (MER) from 12.1 percent to 10.1 percent on DevMan and from 17.8 percent to 16.0 percent on DevSGE, indicating consistent performance gains. These results confirm that multilingual TTS is an effective and practical tool for enhancing ASR robustness in low-resource conversational code-switching scenarios.
Spiking Neural Networks (SNNs) are dynamical systems that operate on spatiotemporal data, yet their learnable parameters are often limited to synaptic weights, contributing little to temporal pattern recognition. Learnable parameters that delay spike times can improve classification performance in temporal tasks, but existing methods rely on large networks and offline learning, making them unsuitable for real-time operation in resource-constrained environments. In this paper, we introduce synaptic and axonal delays to leaky integrate and fire (LIF)-based feedforward and recurrent SNNs, and propose three-factor learning rules to simultaneously learn delay parameters online. We employ a smooth Gaussian surrogate to approximate spike derivatives exclusively for the eligibility trace calculation, and together with a top-down error signal determine parameter updates. Our experiments show that incorporating delays improves accuracy by up to 20% over a weights-only baseline, and for networks with similar parameter counts, jointly learning weights and delays yields up to 14% higher accuracy. On the SHD speech recognition dataset, our method achieves similar accuracy to offline backpropagation-based approaches. Compared to state-of-the-art methods, it reduces model size by 6.6x and inference latency by 67%, with only a 2.4% drop in classification accuracy. Our findings benefit the design of power and area-constrained neuromorphic processors by enabling on-device learning and lowering memory requirements.
End-to-end automatic speech recognition has become the dominant paradigm in both academia and industry. To enhance recognition performance, the Weighted Finite-State Transducer (WFST) is widely adopted to integrate acoustic and language models through static graph composition, providing robust decoding and effective error correction. However, WFST decoding relies on a frame-by-frame autoregressive search over CTC posterior probabilities, which severely limits inference efficiency. Motivated by establishing a more principled compatibility between WFST decoding and CTC modeling, we systematically study the two fundamental components of CTC outputs, namely blank and non-blank frames, and identify a key insight: blank frames primarily encode positional information, while non-blank frames carry semantic content. Building on this observation, we introduce Keep-Only-One and Insert-Only-One, two decoding algorithms that explicitly exploit the structural roles of blank and non-blank frames to achieve significantly faster WFST-based inference without compromising recognition accuracy. Experiments on large-scale in-house, AISHELL-1, and LibriSpeech datasets demonstrate state-of-the-art recognition accuracy with substantially reduced decoding latency, enabling truly efficient and high-performance WFST decoding in modern speech recognition systems.
Despite being the best known objective for learning speech representations, the HuBERT objective has not been further developed and improved. We argue that it is the lack of an underlying principle that stalls the development, and, in this paper, we show that predictive coding under a variational view is the principle behind the HuBERT objective. Due to its generality, our formulation provides opportunities to improve parameterization and optimization, and we show two simple modifications that bring immediate improvements to the HuBERT objective. In addition, the predictive coding formulation has tight connections to various other objectives, such as APC, CPC, wav2vec, and BEST-RQ. Empirically, the improvement in pre-training brings significant improvements to four downstream tasks: phone classification, f0 tracking, speaker recognition, and automatic speech recognition, highlighting the importance of the predictive coding interpretation.
Speech Emotion Recognition (SER) has significant potential for mobile applications, yet deployment remains constrained by the computational demands of state-of-the-art transformer architectures. This paper presents a mobile-efficient SER system based on DistilHuBERT, a distilled and 8-bit quantized transformer that achieves approximately 92% parameter reduction compared to full-scale Wav2Vec 2.0 models while maintaining competitive accuracy. We conduct a rigorous 5-fold Leave-One-Session-Out (LOSO) cross-validation on the IEMOCAP dataset to ensure speaker independence, augmented with cross-corpus training on CREMA-D to enhance generalization. Cross-corpus training with CREMA-D yields a 1.2% improvement in Weighted Accuracy, a 1.4% gain in Macro F1-score, and a 32% reduction in cross-fold variance, with the Neutral class showing the most substantial benefit at 5.4% F1-score improvement. Our approach achieves an Unweighted Accuracy of 61.4% with a quantized model footprint of only 23 MB, representing approximately 91% of the Unweighted Accuracy of a full-scale baseline. Cross-corpus evaluation on RAVDESS reveals that the theatrical nature of acted emotions causes predictions to cluster by arousal level rather than by specific emotion categories - happiness predictions systematically bleed into anger predictions, and sadness predictions bleed into neutral predictions, due to acoustic saturation when actors prioritize clarity over subtlety. Despite this theatricality effect reducing overall RAVDESS accuracy to 46.64%, the model maintains robust arousal detection with 99% recall for anger, 55% recall for neutral, and 27% recall for sadness. These findings demonstrate a Pareto-optimal tradeoff between model size and accuracy, enabling practical affect recognition on resource-constrained mobile devices.
Automatic speech recognition (ASR) has witnessed remarkable progress in recent years, largely driven by the emergence of LLM-based ASR paradigm. Despite their strong performance on a variety of open-source benchmarks, existing LLM-based ASR systems still suffer from two critical limitations. First, they are prone to hallucination errors, often generating excessively long and repetitive outputs that are not well grounded in the acoustic input. Second, they provide limited support for flexible and fine-grained contextual customization. To address these challenges, we propose Index-ASR, a large-scale LLM-based ASR system designed to simultaneously enhance robustness and support customizable hotword recognition. The core idea of Index-ASR lies in the integration of LLM and large-scale training data enriched with background noise and contextual information. Experimental results show that our Index-ASR achieves strong performance on both open-source benchmarks and in-house test sets, highlighting its robustness and practicality for real-world ASR applications.
Visual speech recognition (VSR) aims to transcribe spoken content from silent lip-motion videos and is particularly challenging in Mandarin due to severe viseme ambiguity and pervasive homophones. We propose VALLR-Pin, a two-stage Mandarin VSR framework that extends the VALLR architecture by explicitly incorporating Pinyin as an intermediate representation. In the first stage, a shared visual encoder feeds dual decoders that jointly predict Mandarin characters and their corresponding Pinyin sequences, encouraging more robust visual-linguistic representations. In the second stage, an LLM-based refinement module takes the predicted Pinyin sequence together with an N-best list of character hypotheses to resolve homophone-induced ambiguities. To further adapt the LLM to visual recognition errors, we fine-tune it on synthetic instruction data constructed from model-generated Pinyin-text pairs, enabling error-aware correction. Experiments on public Mandarin VSR benchmarks demonstrate that VALLR-Pin consistently improves transcription accuracy under multi-speaker conditions, highlighting the effectiveness of combining phonetic guidance with lightweight LLM refinement.