Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Code-switching (CS), which is when Vietnamese speech uses English words like drug names or procedures, is a common phenomenon in Vietnamese medical communication. This creates challenges for Automatic Speech Recognition (ASR) systems, especially in low-resource languages like Vietnamese. Current most ASR systems struggle to recognize correctly English medical terms within Vietnamese sentences, and no benchmark addresses this challenge. In this paper, we construct a 34-hour \textbf{Vi}etnamese \textbf{Med}ical \textbf{C}ode-\textbf{S}witching \textbf{S}peech dataset (ViMedCSS) containing 16,576 utterances. Each utterance includes at least one English medical term drawn from a curated bilingual lexicon covering five medical topics. Using this dataset, we evaluate several state-of-the-art ASR models and examine different specific fine-tuning strategies for improving medical term recognition to investigate the best approach to solve in the dataset. Experimental results show that Vietnamese-optimized models perform better on general segments, while multilingual pretraining helps capture English insertions. The combination of both approaches yields the best balance between overall and code-switched accuracy. This work provides the first benchmark for Vietnamese medical code-switching and offers insights into effective domain adaptation for low-resource, multilingual ASR systems.
This paper presents PISHYAR, a socially intelligent smart cane designed by our group to combine socially aware navigation with multimodal human-AI interaction to support both physical mobility and interactive assistance. The system consists of two components: (1) a social navigation framework implemented on a Raspberry Pi 5 that integrates real-time RGB-D perception using an OAK-D Lite camera, YOLOv8-based object detection, COMPOSER-based collective activity recognition, D* Lite dynamic path planning, and haptic feedback via vibration motors for tasks such as locating a vacant seat; and (2) an agentic multimodal LLM-VLM interaction framework that integrates speech recognition, vision language models, large language models, and text-to-speech, with dynamic routing between voice-only and vision-only modes to enable natural voice-based communication, scene description, and object localization from visual input. The system is evaluated through a combination of simulation-based tests, real-world field experiments, and user-centered studies. Results from simulated and real indoor environments demonstrate reliable obstacle avoidance and socially compliant navigation, achieving an overall system accuracy of approximately 80% under different social conditions. Group activity recognition further shows robust performance across diverse crowd scenarios. In addition, a preliminary exploratory user study with eight visually impaired and low-vision participants evaluates the agentic interaction framework through structured tasks and a UTAUT-based questionnaire reveals high acceptance and positive perceptions of usability, trust, and perceived sociability during our experiments. The results highlight the potential of PISHYAR as a multimodal assistive mobility aid that extends beyond navigation to provide socially interactive support for such users.
Federated Neuromorphic Learning (FNL) enables energy-efficient and privacy-preserving learning on devices without centralizing data. However, real-world deployments require additional privacy mechanisms that can significantly alter training signals. This paper analyzes how Differential Privacy (DP) mechanisms, specifically gradient clipping and noise injection, perturb firing-rate statistics in Spiking Neural Networks (SNNs) and how these perturbations are propagated to rate-based FNL coordination. On a speech recognition task under non-IID settings, ablations across privacy budgets and clipping bounds reveal systematic rate shifts, attenuated aggregation, and ranking instability during client selection. Moreover, we relate these shifts to sparsity and memory indicators. Our findings provide actionable guidance for privacy-preserving FNL, specifically regarding the balance between privacy strength and rate-dependent coordination.
This work investigates bidirectional Mamba (BiMamba) for unified streaming and non-streaming automatic speech recognition (ASR). Dynamic chunk size training enables a single model for offline decoding and streaming decoding with various latency settings. In contrast, existing BiMamba based streaming method is limited to fixed chunk size decoding. When dynamic chunk size training is applied, training overhead increases substantially. To tackle this issue, we propose the Trans-Chunk BiMamba (TC-BiMamba) for dynamic chunk size training. Trans-Chunk mechanism trains both bidirectional sequences in an offline style with dynamic chunk size. On the one hand, compared to traditional chunk-wise processing, TC-BiMamba simultaneously achieves 1.3 times training speedup, reduces training memory by 50%, and improves model performance since it can capture bidirectional context. On the other hand, experimental results show that TC-BiMamba outperforms U2++ and matches LC-BiMmaba with smaller model size.
Latency-critical speech applications (e.g., live transcription, voice commands, and real-time translation) demand low time-to-first-token (TTFT) and high transcription accuracy, particularly on resource-constrained edge devices. Full-attention Transformer encoders remain a strong accuracy baseline for automatic speech recognition (ASR) because every frame can directly attend to every other frame, which resolves otherwise locally ambiguous acoustics using distant lexical context. However, this global dependency incurs quadratic complexity in sequence length, inducing an inherent "encode-the-whole-utterance" latency profile. For streaming use cases, this causes TTFT to grow linearly with utterance length as the encoder must process the entire prefix before any decoder token can be emitted. To better meet the needs of on-device, streaming ASR use cases we introduce Moonshine v2, an ergodic streaming-encoder ASR model that employs sliding-window self-attention to achieve bounded, low-latency inference while preserving strong local context. Our models achieve state of the art word error rates across standard benchmarks, attaining accuracy on-par with models 6x their size while running significantly faster. These results demonstrate that carefully designed local attention is competitive with the accuracy of full attention at a fraction of the size and latency cost, opening new possibilities for interactive speech interfaces on edge devices.
We introduce Voxtral Realtime, a natively streaming automatic speech recognition model that matches offline transcription quality at sub-second latency. Unlike approaches that adapt offline models through chunking or sliding windows, Voxtral Realtime is trained end-to-end for streaming, with explicit alignment between audio and text streams. Our architecture builds on the Delayed Streams Modeling framework, introducing a new causal audio encoder and Ada RMS-Norm for improved delay conditioning. We scale pretraining to a large-scale dataset spanning 13 languages. At a delay of 480ms, Voxtral Realtime achieves performance on par with Whisper, the most widely deployed offline transcription system. We release the model weights under the Apache 2.0 license.
Vietnamese has a phonetic orthography, where each grapheme corresponds to at most one phoneme and vice versa. Exploiting this high grapheme-phoneme transparency, we propose ViSpeechFormer (\textbf{Vi}etnamese \textbf{Speech} Trans\textbf{Former}), a phoneme-based approach for Vietnamese Automatic Speech Recognition (ASR). To the best of our knowledge, this is the first Vietnamese ASR framework that explicitly models phonemic representations. Experiments on two publicly available Vietnamese ASR datasets show that ViSpeechFormer achieves strong performance, generalizes better to out-of-vocabulary words, and is less affected by training bias. This phoneme-based paradigm is also promising for other languages with phonetic orthographies. The code will be released upon acceptance of this paper.
This paper introduces the first standardized benchmark for evaluating Automatic Speech Recognition (ASR) in the Bambara language, utilizing one hour of professionally recorded Malian constitutional text. Designed as a controlled reference set under near-optimal acoustic and linguistic conditions, the benchmark was used to evaluate 37 models, ranging from Bambara-trained systems to large-scale commercial models. Our findings reveal that current ASR performance remains significantly below deployment standards in a narrow formal domain; the top-performing system in terms of Word Error Rate (WER) achieved 46.76\% and the best Character Error Rate (CER) of 13.00\% was set by another model, while several prominent multilingual models exceeded 100\% WER. These results suggest that multilingual pre-training and model scaling alone are insufficient for underrepresented languages. Furthermore, because this dataset represents a best-case scenario of the most simplified and formal form of spoken Bambara, these figures are yet to be tested against practical, real-world settings. We provide the benchmark and an accompanying public leaderboard to facilitate transparent evaluation and future research in Bambara speech technology.
Deep learning models trained in a supervised setting have revolutionized audio and speech processing. However, their performance inherently depends on the quantity of human-annotated data, making them costly to scale and prone to poor generalization under unseen conditions. To address these challenges, Self-Supervised Learning (SSL) has emerged as a promising paradigm, leveraging vast amounts of unlabeled data to learn relevant representations. The application of SSL for Automatic Speech Recognition (ASR) has been extensively studied, but research on other downstream tasks, notably Speaker Recognition (SR), remains in its early stages. This work describes major SSL instance-invariance frameworks (e.g., SimCLR, MoCo, and DINO), initially developed for computer vision, along with their adaptation to SR. Various SSL methods for SR, proposed in the literature and built upon these frameworks, are also presented. An extensive review of these approaches is then conducted: (1) the effect of the main hyperparameters of SSL frameworks is investigated; (2) the role of SSL components is studied (e.g., data-augmentation, projector, positive sampling); and (3) SSL frameworks are evaluated on SR with in-domain and out-of-domain data, using a consistent experimental setup, and a comprehensive comparison of SSL methods from the literature is provided. Specifically, DINO achieves the best downstream performance and effectively models intra-speaker variability, although it is highly sensitive to hyperparameters and training conditions, while SimCLR and MoCo provide robust alternatives that effectively capture inter-speaker variability and are less prone to collapse. This work aims to highlight recent trends and advancements, identifying current challenges in the field.
With generative AI advancing, empathy in human-AI interaction is essential. While prior work focuses on emotional reflection, emotional exploration, key to deeper engagement, remains overlooked. Existing LLMs rely on text which captures limited emotion nuances. To address this, we propose RE-LLM, a speech-LLM integrating dimensional emotion embeddings and auxiliary learning. Experiments show statistically significant gains in empathy metrics across three datasets. RE-LLM relatively improves the Emotional Reaction score by 14.79% and 6.76% compared to text-only and speech-LLM baselines on ESD. Notably, it raises the Exploration score by 35.42% and 3.91% on IEMOCAP, 139.28% and 9.83% on ESD, and 60.95% and 22.64% on MSP-PODCAST. It also boosts unweighted accuracy by 5.4% on IEMOCAP, 2.3% on ESD, and 6.9% on MSP-PODCAST in speech emotion recognition. These results highlight the enriched emotional understanding and improved empathetic response generation of RE-LLM.