Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Aug 12, 2025
Abstract:This paper introduces a novel approach to speech restoration by integrating a context-related conditioning strategy. Specifically, we employ the diffusion-based generative restoration model, UNIVERSE++, as a backbone to evaluate the effectiveness of contextual representations. We incorporate acoustic context embeddings extracted from the CLAP model, which capture the environmental attributes of input audio. Additionally, we propose an Acoustic Context (ACX) representation that refines CLAP embeddings to better handle various distortion factors and their intensity in speech signals. Unlike content-based approaches that rely on linguistic and speaker attributes, ACX provides contextual information that enables the restoration model to distinguish and mitigate distortions better. Experimental results indicate that context-aware conditioning improves both restoration performance and its stability across diverse distortion conditions, reducing variability compared to content-based methods.
* Accepted to INTERSPEECH 2025
Via

Aug 13, 2025
Abstract:Monitoring cattle health and optimizing yield are key challenges faced by dairy farmers due to difficulties in tracking all animals on the farm. This work aims to showcase modern data-driven farming practices based on explainable machine learning(ML) methods that explain the activity and behaviour of dairy cattle (cows). Continuous data collection of 3-axis accelerometer sensors and usage of robust ML methodologies and algorithms, provide farmers and researchers with actionable information on cattle activity, allowing farmers to make informed decisions and incorporate sustainable practices. This study utilizes Bluetooth-based Internet of Things (IoT) devices and 4G networks for seamless data transmission, immediate analysis, inference generation, and explains the models performance with explainability frameworks. Special emphasis is put on the pre-processing of the accelerometers time series data, including the extraction of statistical characteristics, signal processing techniques, and lag-based features using the sliding window technique. Various hyperparameter-optimized ML models are evaluated across varying window lengths for activity classification. The k-nearest neighbour Classifier achieved the best performance, with AUC of mean 0.98 and standard deviation of 0.0026 on the training set and 0.99 on testing set). In order to ensure transparency, Explainable AI based frameworks such as SHAP is used to interpret feature importance that can be understood and used by practitioners. A detailed comparison of the important features, along with the stability analysis of selected features, supports development of explainable and practical ML models for sustainable livestock management.
Via

Aug 11, 2025
Abstract:Recent advances in molecular representation learning have produced highly effective encodings of molecules for numerous cheminformatics and bioinformatics tasks. However, extracting general chemical insight while balancing predictive accuracy, interpretability, and computational efficiency remains a major challenge. In this work, we introduce a novel Graph Neural Network (GNN) architecture that combines compressed higher-order topological signals with standard molecular features. Our approach captures global geometric information while preserving computational tractability and human-interpretable structure. We evaluate our model across a range of benchmarks, from small-molecule datasets to complex material datasets, and demonstrate superior performance using a parameter-efficient architecture. We achieve the best performing results in both accuracy and robustness across almost all benchmarks. We open source all code \footnote{All code and results can be found on Github https://github.com/rahulkhorana/TFC-PACT-Net}.
Via

Aug 11, 2025
Abstract:Depression is a major mental health condition that severely impacts the emotional and physical well-being of individuals. The simple nature of data collection from social media platforms has attracted significant interest in properly utilizing this information for mental health research. A Multimodal Depression Detection Network (MDD-Net), utilizing acoustic and visual data obtained from social media networks, is proposed in this work where mutual transformers are exploited to efficiently extract and fuse multimodal features for efficient depression detection. The MDD-Net consists of four core modules: an acoustic feature extraction module for retrieving relevant acoustic attributes, a visual feature extraction module for extracting significant high-level patterns, a mutual transformer for computing the correlations among the generated features and fusing these features from multiple modalities, and a detection layer for detecting depression using the fused feature representations. The extensive experiments are performed using the multimodal D-Vlog dataset, and the findings reveal that the developed multimodal depression detection network surpasses the state-of-the-art by up to 17.37% for F1-Score, demonstrating the greater performance of the proposed system. The source code is accessible at https://github.com/rezwanh001/Multimodal-Depression-Detection.
* Accepted for the 2025 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Vienna, Austria
Via

Aug 08, 2025
Abstract:Alzheimer's disease (AD) is a progressive neurodegenerative disorder that severely impairs cognitive function and quality of life. Timely intervention in AD relies heavily on early and precise diagnosis, which remains challenging due to the complex and subtle structural changes in the brain. Most existing deep learning methods focus only on a single plane of structural magnetic resonance imaging (sMRI) and struggle to accurately capture the complex and nonlinear relationships among pathological regions of the brain, thus limiting their ability to precisely identify atrophic features. To overcome these limitations, we propose an innovative framework, MPF-KANSC, which integrates multi-plane fusion (MPF) for combining features from the coronal, sagittal, and axial planes, and a Kolmogorov-Arnold Network-guided spatial-channel attention mechanism (KANSC) to more effectively learn and represent sMRI atrophy features. Specifically, the proposed model enables parallel feature extraction from multiple anatomical planes, thus capturing more comprehensive structural information. The KANSC attention mechanism further leverages a more flexible and accurate nonlinear function approximation technique, facilitating precise identification and localization of disease-related abnormalities. Experiments on the ADNI dataset confirm that the proposed MPF-KANSC achieves superior performance in AD diagnosis. Moreover, our findings provide new evidence of right-lateralized asymmetry in subcortical structural changes during AD progression, highlighting the model's promising interpretability.
Via

Aug 07, 2025
Abstract:Due to the intracranial volume conduction effects, high-dimensional multi-channel electroencephalography (EEG) features often contain substantial redundant and irrelevant information. This issue not only hinders the extraction of discriminative emotional representations but also compromises the real-time performance. Feature selection has been established as an effective approach to address the challenges while enhancing the transparency and interpretability of emotion recognition models. However, existing EEG feature selection research overlooks the influence of latent EEG feature structures on emotional label correlations and assumes uniform importance across various channels, directly limiting the precise construction of EEG feature selection models for multi-dimensional affective computing. To address these limitations, a novel channel-wise EEG feature selection (CWEFS) method is proposed for multi-dimensional emotion recognition. Specifically, inspired by brain volume conduction effects, CWEFS integrates EEG emotional feature selection into a shared latent structure model designed to construct a consensus latent space across diverse EEG channels. To preserve the local geometric structure, this consensus space is further integrated with the latent semantic analysis of multi-dimensional emotional labels. Additionally, CWEFS incorporates adaptive channel-weight learning to automatically determine the significance of different EEG channels in the emotional feature selection task. The effectiveness of CWEFS was validated using three popular EEG datasets with multi-dimensional emotional labels. Comprehensive experimental results, compared against nineteen feature selection methods, demonstrate that the EEG feature subsets chosen by CWEFS achieve optimal emotion recognition performance across six evaluation metrics.
Via

Aug 12, 2025
Abstract:The rise of LLMs poses new possibilities in modeling opinion evolution, a long-standing task in simulation, by leveraging advanced reasoning abilities to recreate complex, large-scale human cognitive trends. While most prior works focus on opinion evolution surrounding specific isolated events or the views within a country, ours is the first to model the large-scale attitude evolution of a population representing an entire country towards another -- US citizens' perspectives towards China. To tackle the challenges of this broad scenario, we propose a framework that integrates media data collection, user profile creation, and cognitive architecture for opinion updates to successfully reproduce the real trend of US attitudes towards China over a 20-year period from 2005 to today. We also leverage LLMs' capabilities to introduce debiased media exposure, extracting neutral events from typically subjective news contents, to uncover the roots of polarized opinion formation, as well as a devils advocate agent to help explain the rare reversal from negative to positive attitudes towards China, corresponding with changes in the way Americans obtain information about the country. The simulation results, beyond validating our framework architecture, also reveal the impact of biased framing and selection bias in shaping attitudes. Overall, our work contributes to a new paradigm for LLM-based modeling of cognitive behaviors in a large-scale, long-term, cross-border social context, providing insights into the formation of international biases and offering valuable implications for media consumers to better understand the factors shaping their perspectives, and ultimately contributing to the larger social need for bias reduction and cross-cultural tolerance.
* Submitted to AAAI Social Impact 2026
Via

Aug 10, 2025
Abstract:JPEG, as a widely used image compression standard, often introduces severe visual artifacts when achieving high compression ratios. Although existing deep learning-based restoration methods have made considerable progress, they often struggle to recover complex texture details, resulting in over-smoothed outputs. To overcome these limitations, we propose SODiff, a novel and efficient semantic-oriented one-step diffusion model for JPEG artifacts removal. Our core idea is that effective restoration hinges on providing semantic-oriented guidance to the pre-trained diffusion model, thereby fully leveraging its powerful generative prior. To this end, SODiff incorporates a semantic-aligned image prompt extractor (SAIPE). SAIPE extracts rich features from low-quality (LQ) images and projects them into an embedding space semantically aligned with that of the text encoder. Simultaneously, it preserves crucial information for faithful reconstruction. Furthermore, we propose a quality factor-aware time predictor that implicitly learns the compression quality factor (QF) of the LQ image and adaptively selects the optimal denoising start timestep for the diffusion process. Extensive experimental results show that our SODiff outperforms recent leading methods in both visual quality and quantitative metrics. Code is available at: https://github.com/frakenation/SODiff
* 7 pages, 5 figures. The code will be available at
\url{https://github.com/frakenation/SODiff}
Via

Aug 13, 2025
Abstract:The transnational ivory trade continues to drive the decline of elephant populations across Africa, and trafficking networks remain difficult to disrupt. Tusks seized by law enforcement officials carry forensic information on the traffickers responsible for their export, including DNA evidence and handwritten markings made by traffickers. For 20 years, analyses of tusk DNA have identified where elephants were poached and established connections among shipments of ivory. While the links established using genetic evidence are extremely conclusive, genetic data is expensive and sometimes impossible to obtain. But though handwritten markings are easy to photograph, they are rarely documented or analyzed. Here, we present an AI-driven pipeline for extracting and analyzing handwritten markings on seized elephant tusks, offering a novel, scalable, and low-cost source of forensic evidence. Having collected 6,085 photographs from eight large seizures of ivory over a 6-year period (2014-2019), we used an object detection model to extract over 17,000 individual markings, which were then labeled and described using state-of-the-art AI tools. We identified 184 recurring "signature markings" that connect the tusks on which they appear. 20 signature markings were observed in multiple seizures, establishing forensic links between these seizures through traffickers involved in both shipments. This work complements other investigative techniques by filling in gaps where other data sources are unavailable. The study demonstrates the transformative potential of AI in wildlife forensics and highlights practical steps for integrating handwriting analysis into efforts to disrupt organized wildlife crime.
* Submitted. 13 pages, 5 figures, 4 tables
Via

Aug 12, 2025
Abstract:Deep image watermarking, which refers to enable imperceptible watermark embedding and reliable extraction in cover images, has shown to be effective for copyright protection of image assets. However, existing methods face limitations in simultaneously satisfying three essential criteria for generalizable watermarking: 1) invisibility (imperceptible hide of watermarks), 2) robustness (reliable watermark recovery under diverse conditions), and 3) broad applicability (low latency in watermarking process). To address these limitations, we propose a Hierarchical Watermark Learning (HiWL), a two-stage optimization that enable a watermarking model to simultaneously achieve three criteria. In the first stage, distribution alignment learning is designed to establish a common latent space with two constraints: 1) visual consistency between watermarked and non-watermarked images, and 2) information invariance across watermark latent representations. In this way, multi-modal inputs including watermark message (binary codes) and cover images (RGB pixels) can be well represented, ensuring the invisibility of watermarks and robustness in watermarking process thereby. The second stage employs generalized watermark representation learning to establish a disentanglement policy for separating watermarks from image content in RGB space. In particular, it strongly penalizes substantial fluctuations in separated RGB watermarks corresponding to identical messages. Consequently, HiWL effectively learns generalizable latent-space watermark representations while maintaining broad applicability. Extensive experiments demonstrate the effectiveness of proposed method. In particular, it achieves 7.6\% higher accuracy in watermark extraction than existing methods, while maintaining extremely low latency (100K images processed in 8s).
Via
