An accurate assessment of L2 English pronunciation is crucial for language learning, as it provides personalized feedback and ensures a fair evaluation of individual progress. However, automated scoring remains challenging due to the complexity of sentence-level fluency, prosody, and completeness. This paper evaluates the zero-shot performance of Qwen2-Audio-7B-Instruct, an instruction-tuned speech-LLM, on 5,000 Speechocean762 utterances. The model generates rubric-aligned scores for accuracy, fluency, prosody, and completeness, showing strong agreement with human ratings within +-2 tolerance, especially for high-quality speech. However, it tends to overpredict low-quality speech scores and lacks precision in error detection. These findings demonstrate the strong potential of speech LLMs in scalable pronunciation assessment and suggest future improvements through enhanced prompting, calibration, and phonetic integration to advance Computer-Assisted Pronunciation Training.
Hateful speech detection is a key component of content moderation, yet current evaluation frameworks rarely assess why a text is deemed hateful. We introduce \textsf{HateXScore}, a four-component metric suite designed to evaluate the reasoning quality of model explanations. It assesses (i) conclusion explicitness, (ii) faithfulness and causal grounding of quoted spans, (iii) protected group identification (policy-configurable), and (iv) logical consistency among these elements. Evaluated on six diverse hate speech datasets, \textsf{HateXScore} is intended as a diagnostic complement to reveal interpretability failures and annotation inconsistencies that are invisible to standard metrics like Accuracy or F1. Moreover, human evaluation shows strong agreement with \textsf{HateXScore}, validating it as a practical tool for trustworthy and transparent moderation. \textcolor{red}{Disclaimer: This paper contains sensitive content that may be disturbing to some readers.}
Many spoken languages, including English, exhibit wide variation in dialects and accents, making accent control an important capability for flexible text-to-speech (TTS) models. Current TTS systems typically generate accented speech by conditioning on speaker embeddings associated with specific accents. While effective, this approach offers limited interpretability and controllability, as embeddings also encode traits such as timbre and emotion. In this study, we analyze the interaction between speaker embeddings and linguistically motivated phonological rules in accented speech synthesis. Using American and British English as a case study, we implement rules for flapping, rhoticity, and vowel correspondences. We propose the phoneme shift rate (PSR), a novel metric quantifying how strongly embeddings preserve or override rule-based transformations. Experiments show that combining rules with embeddings yields more authentic accents, while embeddings can attenuate or overwrite rules, revealing entanglement between accent and speaker identity. Our findings highlight rules as a lever for accent control and a framework for evaluating disentanglement in speech generation.
Short-utterance speaker verification remains challenging due to limited speaker-discriminative cues in short speech segments. While existing methods focus on enhancing speaker encoders, the embedding learning strategy still forces a single fixed-dimensional representation reused for utterances of any length, leaving capacity misaligned with the information available at different durations. We propose Duration-Aware Matryoshka Embedding (DAME), a model-agnostic framework that builds a nested hierarchy of sub-embeddings aligned to utterance durations: lower-dimensional representations capture compact speaker traits from short utterances, while higher dimensions encode richer details from longer speech. DAME supports both training from scratch and fine-tuning, and serves as a direct alternative to conventional large-margin fine-tuning, consistently improving performance across durations. On the VoxCeleb1-O/E/H and VOiCES evaluation sets, DAME consistently reduces the equal error rate on 1-s and other short-duration trials, while maintaining full-length performance with no additional inference cost. These gains generalize across various speaker encoder architectures under both general training and fine-tuning setups.
Phone recognition (PR) serves as the atomic interface for language-agnostic modeling for cross-lingual speech processing and phonetic analysis. Despite prolonged efforts in developing PR systems, current evaluations only measure surface-level transcription accuracy. We introduce PRiSM, the first open-source benchmark designed to expose blind spots in phonetic perception through intrinsic and extrinsic evaluation of PR systems. PRiSM standardizes transcription-based evaluation and assesses downstream utility in clinical, educational, and multilingual settings with transcription and representation probes. We find that diverse language exposure during training is key to PR performance, encoder-CTC models are the most stable, and specialized PR models still outperform Large Audio Language Models. PRiSM releases code, recipes, and datasets to move the field toward multilingual speech models with robust phonetic ability: https://github.com/changelinglab/prism.
Recent advancements in end-to-end neural speech codecs enable compressing audio at extremely low bitrates while maintaining high-fidelity reconstruction. Meanwhile, low computational complexity and low latency are crucial for real-time communication. In this paper, we propose VoCodec, a speech codec model featuring a computational complexity of only 349.29M multiply-accumulate operations per second (MACs/s) and a latency of 30 ms. With the competitive vocoder Vocos as its backbone, the proposed model ranked fourth on Track 1 in the 2025 LRAC Challenge and achieved the highest subjective evaluation score (MUSHRA) on the clean speech test set. Additionally, we cascade a lightweight neural network at the front end to extend its capability of speech enhancement. Experimental results demonstrate that the two systems achieve competitive performance across multiple evaluation metrics. Speech samples can be found at https://acceleration123.github.io/.
Speaker anonymization aims to conceal a speaker's identity, without considering the linguistic content. In this study, we reveal a weakness of Librispeech, the dataset that is commonly used to evaluate anonymizers: the books read by the Librispeech speakers are so distinct, that speakers can be identified by their vocabularies. Even perfect anonymizers cannot prevent this identity leakage. The EdAcc dataset is better in this regard: only a few speakers can be identified through their vocabularies, encouraging the attacker to look elsewhere for the identities of the anonymized speakers. EdAcc also comprises spontaneous speech and more diverse speakers, complementing Librispeech and giving more insights into how anonymizers work.
We introduce UNMIXX, a novel framework for multiple singing voices separation (MSVS). While related to speech separation, MSVS faces unique challenges: data scarcity and the highly correlated nature of singing voices mixture. To address these issues, we propose UNMIXX with three key components: (1) musically informed mixing strategy to construct highly correlated, music-like mixtures, (2) cross-source attention that drives representations of two singers apart via reverse attention, and (3) magnitude penalty loss penalizing erroneously assigned interfering energy. UNMIXX not only addresses data scarcity by simulating realistic training data, but also excels at separating highly correlated mixtures through cross-source interactions at both the architectural and loss levels. Our extensive experiments demonstrate that UNMIXX greatly enhances performance, with SDRi gains exceeding 2.2 dB over prior work.
Large encoder-decoder models like Whisper achieve strong offline transcription but remain impractical for streaming applications due to high latency. However, due to the accessibility of pre-trained checkpoints, the open Thai ASR landscape remains dominated by these offline architectures, leaving a critical gap in efficient streaming solutions. We present Typhoon ASR Real-time, a 115M-parameter FastConformer-Transducer model for low-latency Thai speech recognition. We demonstrate that rigorous text normalization can match the impact of model scaling: our compact model achieves a 45x reduction in computational cost compared to Whisper Large-v3 while delivering comparable accuracy. Our normalization pipeline resolves systemic ambiguities in Thai transcription --including context-dependent number verbalization and repetition markers (mai yamok) --creating consistent training targets. We further introduce a two-stage curriculum learning approach for Isan (north-eastern) dialect adaptation that preserves Central Thai performance. To address reproducibility challenges in Thai ASR, we release the Typhoon ASR Benchmark, a gold-standard human-labeled datasets with transcriptions following established Thai linguistic conventions, providing standardized evaluation protocols for the research community.
Distributional shifts between training and inference time data remain a central challenge in machine learning, often leading to poor performance. It motivated the study of principled approaches for domain alignment, such as optimal transport based unsupervised domain adaptation, that relies on approximating Monge map using transport plans, which is sensitive to the transport problem regularization strategy and hyperparameters, and might yield biased domains alignment. In this work, we propose to interpret smoothed transport plans as adjacency matrices of bipartite graphs connecting source to target domain and derive domain-invariant samples' representations through spectral embedding. We evaluate our approach on acoustic adaptation benchmarks for music genre recognition, music-speech discrimination, as well as electrical cable defect detection and classification tasks using time domain reflection in different diagnosis settings, achieving overall strong performances.