In this paper, we show that discrete optimal transport (DOT) is an effective black-box adversarial attack against modern audio anti-spoofing countermeasures (CMs). Our attack operates as a post-processing, distribution-alignment step: frame-level WavLM embeddings of generated speech are aligned to an unpaired bona fide pool via entropic OT and a top-$k$ barycentric projection, then decoded with a neural vocoder. Evaluated on ASVspoof2019 and ASVspoof5 with AASIST baselines, DOT yields consistently high equal error rate (EER) across datasets and remains competitive after CM fine-tuning, outperforming several conventional attacks in cross-dataset transfer. Ablation analysis highlights the practical impact of vocoder overlap. Results indicate that distribution-level alignment is a powerful and stable attack surface for deployed CMs.




Post-exercise speech contains rich physiological and linguistic cues, often marked by semantic pauses, breathing pauses, and combined breathing-semantic pauses. Detecting these events enables assessment of recovery rate, lung function, and exertion-related abnormalities. However, existing works on identifying and distinguishing different types of pauses in this context are limited. In this work, building on a recently released dataset with synchronized audio and respiration signals, we provide systematic annotations of pause types. Using these annotations, we systematically conduct exploratory breathing and semantic pause detection and exertion-level classification across deep learning models (GRU, 1D CNN-LSTM, AlexNet, VGG16), acoustic features (MFCC, MFB), and layer-stratified Wav2Vec2 representations. We evaluate three setups-single feature, feature fusion, and a two-stage detection-classification cascade-under both classification and regression formulations. Results show per-type detection accuracy up to 89$\%$ for semantic, 55$\%$ for breathing, 86$\%$ for combined pauses, and 73$\%$overall, while exertion-level classification achieves 90.5$\%$ accuracy, outperformin prior work.
Speech is a rich signal, and labeled audio-text pairs are costly, making self-supervised learning essential for scalable representation learning. A core challenge in speech SSL is generating pseudo-labels that are both informative and efficient: strong labels, such as those used in HuBERT, improve downstream performance but rely on external encoders and multi-stage pipelines, while efficient methods like BEST-RQ achieve simplicity at the cost of weaker labels. We propose BiRQ, a bilevel SSL framework that combines the efficiency of BEST-RQ with the refinement benefits of HuBERT-style label enhancement. The key idea is to reuse part of the model itself as a pseudo-label generator: intermediate representations are discretized by a random-projection quantizer to produce enhanced labels, while anchoring labels derived directly from the raw input stabilize training and prevent collapse. Training is formulated as an efficient first-order bilevel optimization problem, solved end-to-end with differentiable Gumbel-softmax selection. This design eliminates the need for external label encoders, reduces memory cost, and enables iterative label refinement in an end-to-end fashion. BiRQ consistently improves over BEST-RQ while maintaining low complexity and computational efficiency. We validate our method on various datasets, including 960-hour LibriSpeech, 150-hour AMI meetings and 5,000-hour YODAS, demonstrating consistent gains over BEST-RQ.
Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC




We propose Llama-Mimi, a speech language model that uses a unified tokenizer and a single Transformer decoder to jointly model sequences of interleaved semantic and acoustic tokens. Comprehensive evaluation shows that Llama-Mimi achieves state-of-the-art performance in acoustic consistency and possesses the ability to preserve speaker identity. Our analysis further demonstrates that increasing the number of quantizers improves acoustic fidelity but degrades linguistic performance, highlighting the inherent challenge of maintaining long-term coherence. We additionally introduce an LLM-as-a-Judge-based evaluation to assess the spoken content quality of generated outputs. Our models, code, and speech samples are publicly available.
Adversarial perturbations in speech pose a serious threat to automatic speech recognition (ASR) and speaker verification by introducing subtle waveform modifications that remain imperceptible to humans but can significantly alter system outputs. While targeted attacks on end-to-end ASR models have been widely studied, the phonetic basis of these perturbations and their effect on speaker identity remain underexplored. In this work, we analyze adversarial audio at the phonetic level and show that perturbations exploit systematic confusions such as vowel centralization and consonant substitutions. These distortions not only mislead transcription but also degrade phonetic cues critical for speaker verification, leading to identity drift. Using DeepSpeech as our ASR target, we generate targeted adversarial examples and evaluate their impact on speaker embeddings across genuine and impostor samples. Results across 16 phonetically diverse target phrases demonstrate that adversarial audio induces both transcription errors and identity drift, highlighting the need for phonetic-aware defenses to ensure the robustness of ASR and speaker recognition systems.
Speaker diarization systems often struggle with high intrinsic intra-speaker variability, such as shifts in emotion, health, or content. This can cause segments from the same speaker to be misclassified as different individuals, for example, when one raises their voice or speaks faster during conversation. To address this, we propose a style-controllable speech generation model that augments speech across diverse styles while preserving the target speaker's identity. The proposed system starts with diarized segments from a conventional diarizer. For each diarized segment, it generates augmented speech samples enriched with phonetic and stylistic diversity. And then, speaker embeddings from both the original and generated audio are blended to enhance the system's robustness in grouping segments with high intrinsic intra-speaker variability. We validate our approach on a simulated emotional speech dataset and the truncated AMI dataset, demonstrating significant improvements, with error rate reductions of 49% and 35% on each dataset, respectively.
This paper proposes a unimodal aggregation (UMA) based nonautoregressive model for both English and Mandarin speech recognition. The original UMA explicitly segments and aggregates acoustic frames (with unimodal weights that first monotonically increase and then decrease) of the same text token to learn better representations than regular connectionist temporal classification (CTC). However, it only works well in Mandarin. It struggles with other languages, such as English, for which a single syllable may be tokenized into multiple fine-grained tokens, or a token spans fewer than 3 acoustic frames and fails to form unimodal weights. To address this problem, we propose allowing each UMA-aggregated frame map to multiple tokens, via a simple split module that generates two tokens from each aggregated frame before computing the CTC loss.
Automatic Speech Recognition (ASR) systems remain prone to errors that affect downstream applications. In this paper, we propose LIR-ASR, a heuristic optimized iterative correction framework using LLMs, inspired by human auditory perception. LIR-ASR applies a "Listening-Imagining-Refining" strategy, generating phonetic variants and refining them in context. A heuristic optimization with finite state machine (FSM) is introduced to prevent the correction process from being trapped in local optima and rule-based constraints help maintain semantic fidelity. Experiments on both English and Chinese ASR outputs show that LIR-ASR achieves average reductions in CER/WER of up to 1.5 percentage points compared to baselines, demonstrating substantial accuracy gains in transcription.
Foundation models such as Wav2Vec2 excel at representation learning in speech tasks, including audio deepfake detection. However, after being fine-tuned on a fixed set of bonafide and spoofed audio clips, they often fail to generalize to novel deepfake methods not represented in training. To address this, we propose a mixture-of-LoRA-experts approach that integrates multiple low-rank adapters (LoRA) into the model's attention layers. A routing mechanism selectively activates specialized experts, enhancing adaptability to evolving deepfake attacks. Experimental results show that our method outperforms standard fine-tuning in both in-domain and out-of-domain scenarios, reducing equal error rates relative to baseline models. Notably, our best MoE-LoRA model lowers the average out-of-domain EER from 8.55\% to 6.08\%, demonstrating its effectiveness in achieving generalizable audio deepfake detection.