The evaluation of large language models is a complex task, in which several approaches have been proposed. The most common is the use of automated benchmarks in which LLMs have to answer multiple-choice questions of different topics. However, this method has certain limitations, being the most concerning, the poor correlation with the humans. An alternative approach, is to have humans evaluate the LLMs. This poses scalability issues as there is a large and growing number of models to evaluate making it impractical (and costly) to run traditional studies based on recruiting a number of evaluators and having them rank the responses of the models. An alternative approach is the use of public arenas, such as the popular LM arena, on which any user can freely evaluate models on any question and rank the responses of two models. The results are then elaborated into a model ranking. An increasingly important aspect of LLMs is their energy consumption and, therefore, evaluating how energy awareness influences the decisions of humans in selecting a model is of interest. In this paper, we present GEA, the Generative Energy Arena, an arena that incorporates information on the energy consumption of the model in the evaluation process. Preliminary results obtained with GEA are also presented, showing that for most questions, when users are aware of the energy consumption, they favor smaller and more energy efficient models. This suggests that for most user interactions, the extra cost and energy incurred by the more complex and top-performing models do not provide an increase in the perceived quality of the responses that justifies their use.




Grasping unknown objects from a single view has remained a challenging topic in robotics due to the uncertainty of partial observation. Recent advances in large-scale models have led to benchmark solutions such as GraspNet-1Billion. However, such learning-based approaches still face a critical limitation in performance robustness for their sensitivity to sensing noise and environmental changes. To address this bottleneck in achieving highly generalized grasping, we abandon the traditional learning framework and introduce a new perspective: similarity matching, where similar known objects are utilized to guide the grasping of unknown target objects. We newly propose a method that robustly achieves unknown-object grasping from a single viewpoint through three key steps: 1) Leverage the visual features of the observed object to perform similarity matching with an existing database containing various object models, identifying potential candidates with high similarity; 2) Use the candidate models with pre-existing grasping knowledge to plan imitative grasps for the unknown target object; 3) Optimize the grasp quality through a local fine-tuning process. To address the uncertainty caused by partial and noisy observation, we propose a multi-level similarity matching framework that integrates semantic, geometric, and dimensional features for comprehensive evaluation. Especially, we introduce a novel point cloud geometric descriptor, the C-FPFH descriptor, which facilitates accurate similarity assessment between partial point clouds of observed objects and complete point clouds of database models. In addition, we incorporate the use of large language models, introduce the semi-oriented bounding box, and develop a novel point cloud registration approach based on plane detection to enhance matching accuracy under single-view conditions. Videos are available at https://youtu.be/qQDIELMhQmk.
Modeling latent representations in a hyperspherical space has proven effective for capturing directional similarities in high-dimensional text data, benefiting topic modeling. Variational autoencoder-based neural topic models (VAE-NTMs) commonly adopt the von Mises-Fisher prior to encode hyperspherical structure. However, VAE-NTMs often suffer from posterior collapse, where the KL divergence term in the objective function highly diminishes, leading to ineffective latent representations. To mitigate this issue while modeling hyperspherical structure in the latent space, we propose the Spherical Sliced Wasserstein Autoencoder for Topic Modeling (S2WTM). S2WTM employs a prior distribution supported on the unit hypersphere and leverages the Spherical Sliced-Wasserstein distance to align the aggregated posterior distribution with the prior. Experimental results demonstrate that S2WTM outperforms state-of-the-art topic models, generating more coherent and diverse topics while improving performance on downstream tasks.
Text data augmentation is a widely used strategy for mitigating data sparsity in natural language processing (NLP), particularly in low-resource settings where limited samples hinder effective semantic modeling. While augmentation can improve input diversity and downstream interpretability, existing techniques often lack mechanisms to ensure semantic preservation during large-scale or iterative generation, leading to redundancy and instability. This work introduces a principled evaluation framework for large language model (LLM) based text augmentation, comprising two components: (1) Scalability Analysis, which measures semantic consistency as augmentation volume increases, and (2) Iterative Augmentation with Summarization Refinement (IASR), which evaluates semantic drift across recursive paraphrasing cycles. Empirical evaluations across state-of-the-art LLMs show that GPT-3.5 Turbo achieved the best balance of semantic fidelity, diversity, and generation efficiency. Applied to a real-world topic modeling task using BERTopic with GPT-enhanced few-shot labeling, the proposed approach results in a 400% increase in topic granularity and complete elimination of topic overlaps. These findings validated the utility of the proposed frameworks for structured evaluation of LLM-based augmentation in practical NLP pipelines.
Railroad traffic disruption as a result of leaf-fall cost the UK rail industry over 300 million per year and measures to mitigate such disruptions are employed on a large scale, with 1.67 million kilometers of track being treated in the UK in 2021 alone. Therefore, the ability to anticipate the timing of leaf-fall would offer substantial benefits for rail network operators, enabling the efficient scheduling of such mitigation measures. However, current methodologies for predicting leaf-fall exhibit considerable limitations in terms of scalability and reliability. This study endeavors to devise a prediction system that leverages specialized prediction methods and the latest satellite data sources to generate both scalable and reliable insights into leaf-fall timings. An LSTM network trained on ground-truth leaf-falling data combined with multispectral and meteorological satellite data demonstrated a root-mean-square error of 6.32 days for predicting the start of leaf-fall and 9.31 days for predicting the end of leaf-fall. The model, which improves upon previous work on the topic, offers promising opportunities for the optimization of leaf mitigation measures in the railway industry and the improvement of our understanding of complex ecological systems.
Recent advancements in multimodal large language models (MLLMs) have driven researchers to explore how well these models read data visualizations, e.g., bar charts, scatter plots. More recently, attention has shifted to visual question answering with maps (Map-VQA). However, Map-VQA research has primarily focused on choropleth maps, which cover only a limited range of thematic categories and visual analytical tasks. To address these gaps, we introduce MapIQ, a benchmark dataset comprising 14,706 question-answer pairs across three map types: choropleth maps, cartograms, and proportional symbol maps spanning topics from six distinct themes (e.g., housing, crime). We evaluate multiple MLLMs using six visual analytical tasks, comparing their performance against one another and a human baseline. An additional experiment examining the impact of map design changes (e.g., altered color schemes, modified legend designs, and removal of map elements) provides insights into the robustness and sensitivity of MLLMs, their reliance on internal geographic knowledge, and potential avenues for improving Map-VQA performance.




Abstract visual reasoning (AVR) enables humans to quickly discover and generalize abstract rules to new scenarios. Designing intelligent systems with human-like AVR abilities has been a long-standing topic in the artificial intelligence community. Deep AVR solvers have recently achieved remarkable success in various AVR tasks. However, they usually use task-specific designs or parameters in different tasks. In such a paradigm, solving new tasks often means retraining the model, and sometimes retuning the model architectures, which increases the cost of solving AVR problems. In contrast to task-specific approaches, this paper proposes a novel Unified Conditional Generative Solver (UCGS), aiming to address multiple AVR tasks in a unified framework. First, we prove that some well-known AVR tasks can be reformulated as the problem of estimating the predictability of target images in problem panels. Then, we illustrate that, under the proposed framework, training one conditional generative model can solve various AVR tasks. The experiments show that with a single round of multi-task training, UCGS demonstrates abstract reasoning ability across various AVR tasks. Especially, UCGS exhibits the ability of zero-shot reasoning, enabling it to perform abstract reasoning on problems from unseen AVR tasks in the testing phase.
Turn-taking is a fundamental component of spoken dialogue, however conventional studies mostly involve dyadic settings. This work focuses on applying voice activity projection (VAP) to predict upcoming turn-taking in triadic multi-party scenarios. The goal of VAP models is to predict the future voice activity for each speaker utilizing only acoustic data. This is the first study to extend VAP into triadic conversation. We trained multiple models on a Japanese triadic dataset where participants discussed a variety of topics. We found that the VAP trained on triadic conversation outperformed the baseline for all models but that the type of conversation affected the accuracy. This study establishes that VAP can be used for turn-taking in triadic dialogue scenarios. Future work will incorporate this triadic VAP turn-taking model into spoken dialogue systems.
Tracking the strategic focus of companies through topics in their earnings calls is a key task in financial analysis. However, as industries evolve, traditional topic modeling techniques struggle to dynamically capture emerging topics and their relationships. In this work, we propose an LLM-agent driven approach to discover and retrieve emerging topics from quarterly earnings calls. We propose an LLM-agent to extract topics from documents, structure them into a hierarchical ontology, and establish relationships between new and existing topics through a topic ontology. We demonstrate the use of extracted topics to infer company-level insights and emerging trends over time. We evaluate our approach by measuring ontology coherence, topic evolution accuracy, and its ability to surface emerging financial trends.
With widespread adoption of transformer-based language models in AI, there is significant interest in the limits of LLMs capabilities, specifically so-called hallucinations, occurrences in which LLMs provide spurious, factually incorrect or nonsensical information when prompted on certain subjects. Furthermore, there is growing interest in agentic uses of LLMs - that is, using LLMs to create agents that act autonomously or semi-autonomously to carry out various tasks, including tasks with applications in the real world. This makes it important to understand the types of tasks LLMs can and cannot perform. We explore this topic from the perspective of the computational complexity of LLM inference. We show that LLMs are incapable of carrying out computational and agentic tasks beyond a certain complexity, and further that LLMs are incapable of verifying the accuracy of tasks beyond a certain complexity. We present examples of both, then discuss some consequences of this work.