



Query Expansion (QE) enriches queries and Document Expansion (DE) enriches documents, and these two techniques are often applied separately. However, such separate application may lead to semantic misalignment between the expanded queries (or documents) and their relevant documents (or queries). To address this serious issue, we propose TCDE, a dual expansion strategy that leverages large language models (LLMs) for topic-centric enrichment on both queries and documents. In TCDE, we design two distinct prompt templates for processing each query and document. On the query side, an LLM is guided to identify distinct sub-topics within each query and generate a focused pseudo-document for each sub-topic. On the document side, an LLM is guided to distill each document into a set of core topic sentences. The resulting outputs are used to expand the original query and document. This topic-centric dual expansion process establishes semantic bridges between queries and their relevant documents, enabling better alignment for downstream retrieval models. Experiments on two challenging benchmarks, TREC Deep Learning and BEIR, demonstrate that TCDE achieves substantial improvements over strong state-of-the-art expansion baselines. In particular, on dense retrieval tasks, it outperforms several state-of-the-art methods, with a relative improvement of 2.8\% in NDCG@10 on the SciFact dataset. Experimental results validate the effectiveness of our topic-centric and dual expansion strategy.



AI technologies have rapidly moved into business and research applications that involve large text corpora, including computational journalism research and newsroom settings. These models, trained on extant data from various sources, can be conceptualized as historical artifacts that encode decades-old attitudes and stereotypes. This paper investigates one such example trained on the broadly-used New York Times Annotated Corpus to create a multi-label classifier. Our use in research settings surfaced the concerning "blacks" thematic topic label. Through quantitative and qualitative means we investigate this label's use in the training corpus, what concepts it might be encoding in the trained classifier, and how those concepts impact our model use. Via the application of explainable AI methods, we find that the "blacks" label operates partially as a general "racism detector" across some minoritized groups. However, it performs poorly against expectations on modern examples such as COVID-19 era anti-Asian hate stories, and reporting on the Black Lives Matter movement. This case study of interrogating embedded biases in a model reveals how similar applications in newsroom settings can lead to unexpected outputs that could impact a wide variety of potential uses of any large language model-story discovery, audience targeting, summarization, etc. The fundamental tension this exposes for newsrooms is how to adopt AI-enabled workflow tools while reducing the risk of reproducing historical biases in news coverage.




This research presents the implementation of a Sharia-compliant chatbot as an interactive medium for consulting Islamic questions, leveraging Reinforcement Learning (Q-Learning) integrated with Sentence-Transformers for semantic embedding to ensure contextual and accurate responses. Utilizing the CRISP-DM methodology, the system processes a curated Islam QA dataset of 25,000 question-answer pairs from authentic sources like the Qur'an, Hadith, and scholarly fatwas, formatted in JSON for flexibility and scalability. The chatbot prototype, developed with a Flask API backend and Flutter-based mobile frontend, achieves 87% semantic accuracy in functional testing across diverse topics including fiqh, aqidah, ibadah, and muamalah, demonstrating its potential to enhance religious literacy, digital da'wah, and access to verified Islamic knowledge in the Industry 4.0 era. While effective for closed-domain queries, limitations such as static learning and dataset dependency highlight opportunities for future enhancements like continuous adaptation and multi-turn conversation support, positioning this innovation as a bridge between traditional Islamic scholarship and modern AI-driven consultation.




We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time.
Social bots are now deeply embedded in online platforms for promotion, persuasion, and manipulation. Most bot-detection systems still treat behavioural features as static, implicitly assuming bots behave stationarily over time. We test that assumption for promotional Twitter bots, analysing change in both individual behavioural signals and the relationships between them. Using 2,615 promotional bot accounts and 2.8M tweets, we build yearly time series for ten content-based meta-features. Augmented Dickey-Fuller and KPSS tests plus linear trends show all ten are non-stationary: nine increase over time, while language diversity declines slightly. Stratifying by activation generation and account age reveals systematic differences: second-generation bots are most active and link-heavy; short-lived bots show intense, repetitive activity with heavy hashtag/URL use; long-lived bots are less active but more linguistically diverse and use emojis more variably. We then analyse co-occurrence across generations using 18 interpretable binary features spanning actions, topic similarity, URLs, hashtags, sentiment, emojis, and media (153 pairs). Chi-square tests indicate almost all pairs are dependent. Spearman correlations shift in strength and sometimes polarity: many links (e.g. multiple hashtags with media; sentiment with URLs) strengthen, while others flip from weakly positive to weakly or moderately negative. Later generations show more structured combinations of cues. Taken together, these studies provide evidence that promotional social bots adapt over time at both the level of individual meta-features and the level of feature interdependencies, with direct implications for the design and evaluation of bot-detection systems trained on historical behavioural features.
Encyclopedic knowledge platforms are key gateways through which users explore information online. The recent release of Grokipedia, a fully AI-generated encyclopedia, introduces a new alternative to traditional, well-established platforms like Wikipedia. In this context, search engine mechanisms play an important role in guiding users exploratory paths, yet their behavior across different encyclopedic systems remains underexplored. In this work, we address this gap by providing the first comparative analysis of search engine in Wikipedia and Grokipedia. Using nearly 10,000 neutral English words and their substrings as queries, we collect over 70,000 search engine results and examine their semantic alignment, overlap, and topical structure. We find that both platforms frequently generate results that are weakly related to the original query and, in many cases, surface unexpected content starting from innocuous queries. Despite these shared properties, the two systems often produce substantially different recommendation sets for the same query. Through topical annotation and trajectory analysis, we further identify systematic differences in how content categories are surfaced and how search engine results evolve over multiple stages of exploration. Overall, our findings show that unexpected search engine outcomes are a common feature of both the platforms, even though they exhibit discrepancies in terms of topical distribution and query suggestions.
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts' conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.




Choosing the number of topics $T$ in Latent Dirichlet Allocation (LDA) is a key design decision that strongly affects both the statistical fit and interpretability of topic models. In this work, we formulate the selection of $T$ as a discrete black-box optimization problem, where each function evaluation corresponds to training an LDA model and measuring its validation perplexity. Under a fixed evaluation budget, we compare four families of optimizers: two hand-designed evolutionary methods - Genetic Algorithm (GA) and Evolution Strategy (ES) - and two learned, amortized approaches, Preferential Amortized Black-Box Optimization (PABBO) and Sharpness-Aware Black-Box Optimization (SABBO). Our experiments show that, while GA, ES, PABBO, and SABBO eventually reach a similar band of final perplexity, the amortized optimizers are substantially more sample- and time-efficient. SABBO typically identifies a near-optimal topic number after essentially a single evaluation, and PABBO finds competitive configurations within a few evaluations, whereas GA and ES require almost the full budget to approach the same region.
Skilled human interviewers can extract valuable information from experts. This raises a fundamental question: what makes some questions more effective than others? To address this, a quantitative evaluation of question-generation models is essential. Video question generation (VQG) is a topic for video question answering (VideoQA), where questions are generated for given answers. Their evaluation typically focuses on the ability to answer questions, rather than the quality of generated questions. In contrast, we focus on the question quality in eliciting unseen knowledge from human experts. For a continuous improvement of VQG models, we propose a protocol that evaluates the ability by simulating question-answering communication with experts using a question-to-answer retrieval. We obtain the retriever by constructing a novel dataset, EgoExoAsk, which comprises 27,666 QA pairs generated from Ego-Exo4D's expert commentary annotation. The EgoExoAsk training set is used to obtain the retriever, and the benchmark is constructed on the validation set with Ego-Exo4D video segments. Experimental results demonstrate our metric reasonably aligns with question generation settings: models accessing richer context are evaluated better, supporting that our protocol works as intended. The EgoExoAsk dataset is available in https://github.com/omron-sinicx/VQG4ExpertKnowledge .




Large language models (LLMs) are increasingly consulted by parents for pediatric guidance, yet their safety under real-world adversarial pressures is poorly understood. Anxious parents often use urgent language that can compromise model safeguards, potentially causing harmful advice. PediatricAnxietyBench is an open-source benchmark of 300 high-quality queries across 10 pediatric topics (150 patient-derived, 150 adversarial) enabling reproducible evaluation. Two Llama models (70B and 8B) were assessed using a multi-dimensional safety framework covering diagnostic restraint, referral adherence, hedging, and emergency recognition. Adversarial queries incorporated parental pressure patterns, including urgency, economic barriers, and challenges to disclaimers. Mean safety score was 5.50/15 (SD=2.41). The 70B model outperformed the 8B model (6.26 vs 4.95, p<0.001) with lower critical failures (4.8% vs 12.0%, p=0.02). Adversarial queries reduced safety by 8% (p=0.03), with urgency causing the largest drop (-1.40). Vulnerabilities appeared in seizures (33.3% inappropriate diagnosis) and post-vaccination queries. Hedging strongly correlated with safety (r=0.68, p<0.001), while emergency recognition was absent. Model scale influences safety, yet all models showed vulnerabilities to realistic parental pressures. PediatricAnxietyBench provides a reusable adversarial evaluation framework to reveal clinically significant failure modes overlooked by standard benchmarks.