Abstract:Recent learning-based visual localization methods use global descriptors to disambiguate visually similar places, but existing approaches often derive these descriptors from geometric cues alone (e.g., covisibility graphs), limiting their discriminative power and reducing robustness in the presence of noisy geometric constraints. We propose an aggregator module that learns global descriptors consistent with both geometrical structure and visual similarity, ensuring that images are close in descriptor space only when they are visually similar and spatially connected. This corrects erroneous associations caused by unreliable overlap scores. Using a batch-mining strategy based solely on the overlap scores and a modified contrastive loss, our method trains without manual place labels and generalizes across diverse environments. Experiments on challenging benchmarks show substantial localization gains in large-scale environments while preserving computational and memory efficiency. Code is available at \href{https://github.com/sontung/robust\_scr}{github.com/sontung/robust\_scr}.
Abstract:Place recognition, the ability to identify previously visited locations, is critical for both biological navigation and autonomous systems. This review synthesizes findings from robotic systems, animal studies, and human research to explore how different systems encode and recall place. We examine the computational and representational strategies employed across artificial systems, animals, and humans, highlighting convergent solutions such as topological mapping, cue integration, and memory management. Animal systems reveal evolved mechanisms for multimodal navigation and environmental adaptation, while human studies provide unique insights into semantic place concepts, cultural influences, and introspective capabilities. Artificial systems showcase scalable architectures and data-driven models. We propose a unifying set of concepts by which to consider and develop place recognition mechanisms and identify key challenges such as generalization, robustness, and environmental variability. This review aims to foster innovations in artificial localization by connecting future developments in artificial place recognition systems to insights from both animal navigation research and human spatial cognition studies.
Abstract:The reproducibility crisis in scientific computing constrains robotics research. Existing studies reveal that up to 70% of robotics algorithms cannot be reproduced by independent teams, while many others fail to reach deployment because creating shareable software environments remains prohibitively complex. These challenges stem from fragmented, multi-language, and hardware-software toolchains that lead to dependency hell. We present Pixi, a unified package-management framework that addresses these issues by capturing exact dependency states in project-level lockfiles, ensuring bit-for-bit reproducibility across platforms. Its high-performance SAT solver achieves up to 10x faster dependency resolution than comparable tools, while integration of the conda-forge and PyPI ecosystems removes the need for multiple managers. Adopted in over 5,300 projects since 2023, Pixi reduces setup times from hours to minutes and lowers technical barriers for researchers worldwide. By enabling scalable, reproducible, collaborative research infrastructure, Pixi accelerates progress in robotics and AI.
Abstract:Event-based localization research and datasets are a rapidly growing area of interest, with a tenfold increase in the cumulative total number of published papers on this topic over the past 10 years. Whilst the rapid expansion in the field is exciting, it brings with it an associated challenge: a growth in the variety of required code and package dependencies as well as data formats, making comparisons difficult and cumbersome for researchers to implement reliably. To address this challenge, we present Event-LAB: a new and unified framework for running several event-based localization methodologies across multiple datasets. Event-LAB is implemented using the Pixi package and dependency manager, that enables a single command-line installation and invocation for combinations of localization methods and datasets. To demonstrate the capabilities of the framework, we implement two common event-based localization pipelines: Visual Place Recognition (VPR) and Simultaneous Localization and Mapping (SLAM). We demonstrate the ability of the framework to systematically visualize and analyze the results of multiple methods and datasets, revealing key insights such as the association of parameters that control event collection counts and window sizes for frame generation to large variations in performance. The results and analysis demonstrate the importance of fairly comparing methodologies with consistent event image generation parameters. Our Event-LAB framework provides this ability for the research community, by contributing a streamlined workflow for easily setting up multiple conditions.
Abstract:Geo-localization is the task of identifying the location of an image using visual cues alone. It has beneficial applications, such as improving disaster response, enhancing navigation, and geography education. Recently, Vision-Language Models (VLMs) are increasingly demonstrating capabilities as accurate image geo-locators. This brings significant privacy risks, including those related to stalking and surveillance, considering the widespread uses of AI models and sharing of photos on social media. The precision of these models is likely to improve in the future. Despite these risks, there is little work on systematically evaluating the geolocation precision of Generative VLMs, their limits and potential for unintended inferences. To bridge this gap, we conduct a comprehensive assessment of the geolocation capabilities of 25 state-of-the-art VLMs on four benchmark image datasets captured in diverse environments. Our results offer insight into the internal reasoning of VLMs and highlight their strengths, limitations, and potential societal risks. Our findings indicate that current VLMs perform poorly on generic street-level images yet achieve notably high accuracy (61\%) on images resembling social media content, raising significant and urgent privacy concerns.
Abstract:Geo-localization from a single image at planet scale (essentially an advanced or extreme version of the kidnapped robot problem) is a fundamental and challenging task in applications such as navigation, autonomous driving and disaster response due to the vast diversity of locations, environmental conditions, and scene variations. Traditional retrieval-based methods for geo-localization struggle with scalability and perceptual aliasing, while classification-based approaches lack generalization and require extensive training data. Recent advances in vision-language models (VLMs) offer a promising alternative by leveraging contextual understanding and reasoning. However, while VLMs achieve high accuracy, they are often prone to hallucinations and lack interpretability, making them unreliable as standalone solutions. In this work, we propose a novel hybrid geo-localization framework that combines the strengths of VLMs with retrieval-based visual place recognition (VPR) methods. Our approach first leverages a VLM to generate a prior, effectively guiding and constraining the retrieval search space. We then employ a retrieval step, followed by a re-ranking mechanism that selects the most geographically plausible matches based on feature similarity and proximity to the initially estimated coordinates. We evaluate our approach on multiple geo-localization benchmarks and show that it consistently outperforms prior state-of-the-art methods, particularly at street (up to 4.51%) and city level (up to 13.52%). Our results demonstrate that VLM-generated geographic priors in combination with VPR lead to scalable, robust, and accurate geo-localization systems.
Abstract:TAT-VPR is a ternary-quantized transformer that brings dynamic accuracy-efficiency trade-offs to visual SLAM loop-closure. By fusing ternary weights with a learned activation-sparsity gate, the model can control computation by up to 40% at run-time without degrading performance (Recall@1). The proposed two-stage distillation pipeline preserves descriptor quality, letting it run on micro-UAV and embedded SLAM stacks while matching state-of-the-art localization accuracy.
Abstract:In this paper we evaluate performance of the SeqSLAM algorithm for passive vision-based localization in very dark environments with low-cost cameras that result in massively blurred images. We evaluate the effect of motion blur from exposure times up to 10,000 ms from a moving car, and the performance of localization in day time from routes learned at night in two different environments. Finally we perform a statistical analysis that compares the baseline performance of matching unprocessed grayscale images to using patch normalization and local neighborhood normalization - the two key SeqSLAM components. Our results and analysis show for the first time why the SeqSLAM algorithm is effective, and demonstrate the potential for cheap camera-based localization systems that function despite extreme appearance change.




Abstract:Visual Simultaneous Localization and Mapping (VSLAM) research faces significant challenges due to fragmented toolchains, complex system configurations, and inconsistent evaluation methodologies. To address these issues, we present VSLAM-LAB, a unified framework designed to streamline the development, evaluation, and deployment of VSLAM systems. VSLAM-LAB simplifies the entire workflow by enabling seamless compilation and configuration of VSLAM algorithms, automated dataset downloading and preprocessing, and standardized experiment design, execution, and evaluation--all accessible through a single command-line interface. The framework supports a wide range of VSLAM systems and datasets, offering broad compatibility and extendability while promoting reproducibility through consistent evaluation metrics and analysis tools. By reducing implementation complexity and minimizing configuration overhead, VSLAM-LAB empowers researchers to focus on advancing VSLAM methodologies and accelerates progress toward scalable, real-world solutions. We demonstrate the ease with which user-relevant benchmarks can be created: here, we introduce difficulty-level-based categories, but one could envision environment-specific or condition-specific categories.




Abstract:In visual place recognition (VPR), filtering and sequence-based matching approaches can improve performance by integrating temporal information across image sequences, especially in challenging conditions. While these methods are commonly applied, their effects on system behavior can be unpredictable and can actually make performance worse in certain situations. In this work, we present a new supervised learning approach that learns to predict the per-frame sequence matching receptiveness (SMR) of VPR techniques, enabling the system to selectively decide when to trust the output of a sequence matching system. The approach is agnostic to the underlying VPR technique. Our approach predicts SMR-and hence significantly improves VPR performance-across a large range of state-of-the-art and classical VPR techniques (namely CosPlace, MixVPR, EigenPlaces, SALAD, AP-GeM, NetVLAD and SAD), and across three benchmark VPR datasets (Nordland, Oxford RobotCar, and SFU-Mountain). We also provide insights into a complementary approach that uses the predictor to replace discarded matches, as well as ablation studies, including an analysis of the interactions between our SMR predictor and the selected sequence length. We will release our code upon acceptance.