Autonomous control of double-Ackermann-steering robots is essential in agricultural applications, where robots must execute precise and complex maneuvers within a limited space. Classical methods, such as the Timed Elastic Band (TEB) planner, can address this problem, but they rely on parameter tuning, making them highly sensitive to changes in robot configuration or environment and impractical to deploy without constant recalibration. At the same time, end-to-end deep reinforcement learning (DRL) methods often fail due to unsuitable reward functions for non-holonomic constraints, resulting in sub-optimal policies and poor generalization. To address these challenges, this paper presents ManeuverNet, a DRL framework tailored for double-Ackermann systems, combining Soft Actor-Critic with CrossQ. Furthermore, ManeuverNet introduces four specifically designed reward functions to support maneuver learning. Unlike prior work, ManeuverNet does not depend on expert data or handcrafted guidance. We extensively evaluate ManeuverNet against both state-of-the-art DRL baselines and the TEB planner. Experimental results demonstrate that our framework substantially improves maneuverability and success rates, achieving more than a 40% gain over DRL baselines. Moreover, ManeuverNet effectively mitigates the strong parameter sensitivity observed in the TEB planner. In real-world trials, ManeuverNet achieved up to a 90% increase in maneuvering trajectory efficiency, highlighting its robustness and practical applicability.
We present ROSA -- Roundabout Optimized Speed Advisory -- a system that combines multi-agent trajectory prediction with coordinated speed guidance for multimodal, mixed traffic at roundabouts. Using a Transformer-based model, ROSA jointly predicts the future trajectories of vehicles and Vulnerable Road Users (VRUs) at roundabouts. Trained for single-step prediction and deployed autoregressively, it generates deterministic outputs, enabling actionable speed advisories. Incorporating motion dynamics, the model achieves high accuracy (ADE: 1.29m, FDE: 2.99m at a five-second prediction horizon), surpassing prior work. Adding route intention further improves performance (ADE: 1.10m, FDE: 2.36m), demonstrating the value of connected vehicle data. Based on predicted conflicts with VRUs and circulating vehicles, ROSA provides real-time, proactive speed advisories for approaching and entering the roundabout. Despite prediction uncertainty, ROSA significantly improves vehicle efficiency and safety, with positive effects even on perceived safety from a VRU perspective. The source code of this work is available under: github.com/urbanAIthi/ROSA.
Reinforcement learning (RL) plays a central role in large language model (LLM) post-training. Among existing approaches, Group Relative Policy Optimization (GRPO) is widely used, especially for RL with verifiable rewards (RLVR) fine-tuning. In GRPO, each query prompts the LLM to generate a group of rollouts with a fixed group size $N$. When all rollouts in a group share the same outcome, either all correct or all incorrect, the group-normalized advantages become zero, yielding no gradient signal and wasting fine-tuning compute. We introduce Adaptive Efficient Rollout Optimization (AERO), an enhancement of GRPO. AERO uses an adaptive rollout strategy, applies selective rejection to strategically prune rollouts, and maintains a Bayesian posterior to prevent zero-advantage dead zones. Across three model configurations (Qwen2.5-Math-1.5B, Qwen2.5-7B, and Qwen2.5-7B-Instruct), AERO improves compute efficiency without sacrificing performance. Under the same total rollout budget, AERO reduces total training compute by about 48% while shortening wall-clock time per step by about 45% on average. Despite the substantial reduction in compute, AERO matches or improves Pass@8 and Avg@8 over GRPO, demonstrating a practical, scalable, and compute-efficient strategy for RL-based LLM alignment.
We construct a concept-object knowledge graph from the full astro-ph corpus through July 2025. Using an automated pipeline, we extract named astrophysical objects from OCR-processed papers, resolve them to SIMBAD identifiers, and link them to scientific concepts annotated in the source corpus. We then test whether historical graph structure can forecast new concept-object associations before they appear in print. Because the concepts are derived from clustering and therefore overlap semantically, we apply an inference-time concept-similarity smoothing step uniformly to all methods. Across four temporal cutoffs on a physically meaningful subset of concepts, an implicit-feedback matrix factorization model (alternating least squares, ALS) with smoothing outperforms the strongest neighborhood baseline (KNN using text-embedding concept similarity) by 16.8% on NDCG@100 (0.144 vs 0.123) and 19.8% on Recall@100 (0.175 vs 0.146), and exceeds the best recency heuristic by 96% and 88%, respectively. These results indicate that historical literature encodes predictive structure not captured by global heuristics or local neighborhood voting, suggesting a path toward tools that could help triage follow-up targets for scarce telescope time.
We investigate how formal temporal logic specifications can enhance the safety and robustness of reinforcement learning (RL) control in aerospace applications. Using the open source AeroBench F-16 simulation benchmark, we train a Proximal Policy Optimization (PPO) agent to regulate engine throttle and track commanded airspeed. The control objective is encoded as a Signal Temporal Logic (STL) requirement to maintain airspeed within a prescribed band during the final seconds of each maneuver. To enforce this specification at run time, we introduce a conformal STL shield that filters the RL agent's actions using online conformal prediction. We compare three settings: (i) PPO baseline, (ii) PPO with a classical rule-based STL shield, and (iii) PPO with the proposed conformal shield, under both nominal conditions and a severe stress scenario involving aerodynamic model mismatch, actuator rate limits, measurement noise, and mid-episode setpoint jumps. Experiments show that the conformal shield preserves STL satisfaction while maintaining near baseline performance and providing stronger robustness guarantees than the classical shield. These results demonstrate that combining formal specification monitoring with data driven RL control can substantially improve the reliability of autonomous flight control in challenging environments.
Deploying large language models (LLMs) in real-time systems remains challenging due to their substantial computational demands and privacy concerns. We propose Floe, a hybrid federated learning framework designed for latency-sensitive, resource-constrained environments. Floe combines a cloud-based black-box LLM with lightweight small language models (SLMs) on edge devices to enable low-latency, privacy-preserving inference. Personal data and fine-tuning remain on-device, while the cloud LLM contributes general knowledge without exposing proprietary weights. A heterogeneity-aware LoRA adaptation strategy enables efficient edge deployment across diverse hardware, and a logit-level fusion mechanism enables real-time coordination between edge and cloud models. Extensive experiments demonstrate that Floe enhances user privacy and personalization. Moreover, it significantly improves model performance and reduces inference latency on edge devices under real-time constraints compared with baseline approaches.
We introduce Machine Learning as a Tool (MLAT), a design pattern in which pre-trained statistical machine learning models are exposed as callable tools within large language model (LLM) agent workflows. This allows an orchestrating agent to invoke quantitative predictions when needed and reason about their outputs in context. Unlike conventional pipelines that treat ML inference as a static preprocessing step, MLAT positions the model as a first-class tool alongside web search, database queries, and APIs, enabling the LLM to decide when and how to use it based on conversational context. To validate MLAT, we present PitchCraft, a pilot production system that converts discovery call recordings into professional proposals with ML-predicted pricing. The system uses two agents: a Research Agent that gathers prospect intelligence via parallel tool calls, and a Draft Agent that invokes an XGBoost pricing model as a tool call and generates a complete proposal through structured outputs. The pricing model, trained on 70 examples combining real and human-verified synthetic data, achieves R^2 = 0.807 on held-out data with a mean absolute error of 3688 USD. The system reduces proposal generation time from multiple hours to under 10 minutes. We describe the MLAT framework, structured output architecture, training methodology under extreme data scarcity, and sensitivity analysis demonstrating meaningful learned relationships. MLAT generalizes to domains requiring quantitative estimation combined with contextual reasoning.
In multi-intent intent-based networks, a single fault can trigger co-drift where multiple intents exhibit symptomatic KPI degradation, creating ambiguity about the true root-cause intent. We present MILD, a proactive framework that reformulates intent assurance from reactive drift detection to fixed-horizon failure prediction with intent-level disambiguation. MILD uses a teacher-augmented Mixture-of-Experts where a gated disambiguation module identifies the root-cause intent while per-intent heads output calibrated risk scores. On a benchmark with non-linear failures and co-drifts, MILD provides 3.8\%--92.5\% longer remediation lead time and improves intent-level root-cause disambiguation accuracy by 9.4\%--45.8\% over baselines. MILD also provides per-alert KPI explanations, enabling actionable diagnosis.
We study optimization for losses that admit a variance-mean scale-mixture representation. Under this representation, each EM iteration is a weighted least squares update in which latent variables determine observation and parameter weights; these play roles analogous to Adam's second-moment scaling and AdamW's weight decay, but are derived from the model. The resulting Scale Mixture EM (SM-EM) algorithm removes user-specified learning-rate and momentum schedules. On synthetic ill-conditioned logistic regression benchmarks with $p \in \{20, \ldots, 500\}$, SM-EM with Nesterov acceleration attains up to $13\times$ lower final loss than Adam tuned by learning-rate grid search. For a 40-point regularization path, sharing sufficient statistics across penalty values yields a $10\times$ runtime reduction relative to the same tuned-Adam protocol. For the base (non-accelerated) algorithm, EM monotonicity guarantees nonincreasing objective values; adding Nesterov extrapolation trades this guarantee for faster empirical convergence.
People increasingly use large language models (LLMs) to explore ideas, gather information, and make sense of the world. In these interactions, they encounter agents that are overly agreeable. We argue that this sycophancy poses a unique epistemic risk to how individuals come to see the world: unlike hallucinations that introduce falsehoods, sycophancy distorts reality by returning responses that are biased to reinforce existing beliefs. We provide a rational analysis of this phenomenon, showing that when a Bayesian agent is provided with data that are sampled based on a current hypothesis the agent becomes increasingly confident about that hypothesis but does not make any progress towards the truth. We test this prediction using a modified Wason 2-4-6 rule discovery task where participants (N=557) interacted with AI agents providing different types of feedback. Unmodified LLM behavior suppressed discovery and inflated confidence comparably to explicitly sycophantic prompting. By contrast, unbiased sampling from the true distribution yielded discovery rates five times higher. These results reveal how sycophantic AI distorts belief, manufacturing certainty where there should be doubt.