Current Vision-Language-Action (VLA) models rely on fixed computational depth, expending the same amount of compute on simple adjustments and complex multi-step manipulation. While Chain-of-Thought (CoT) prompting enables variable computation, it scales memory linearly and is ill-suited for continuous action spaces. We introduce Recurrent-Depth VLA (RD-VLA), an architecture that achieves computational adaptivity via latent iterative refinement rather than explicit token generation. RD-VLA employs a recurrent, weight-tied action head that supports arbitrary inference depth with a constant memory footprint. The model is trained using truncated backpropagation through time (TBPTT) to efficiently supervise the refinement process. At inference, RD-VLA dynamically allocates compute using an adaptive stopping criterion based on latent convergence. Experiments on challenging manipulation tasks show that recurrent depth is critical: tasks that fail entirely (0 percent success) with single-iteration inference exceed 90 percent success with four iterations, while simpler tasks saturate rapidly. RD-VLA provides a scalable path to test-time compute in robotics, replacing token-based reasoning with latent reasoning to achieve constant memory usage and up to 80x inference speedup over prior reasoning-based VLA models. Project page: https://rd-vla.github.io/
Process rewards have been widely used in deep reinforcement learning to improve training efficiency, reduce variance, and prevent reward hacking. In LLM reasoning, existing works also explore various solutions for learning effective process reward models (PRM) with or without the help of an expert policy. However, existing methods either rely on strong assumptions about the expert policies (e.g., requiring their reward functions) or suffer intrinsic limitations (e.g., entropy collapse), resulting in weak PRMs or limited generalizability. In this paper, we introduce rePIRL, an inverse RL-inspired framework that learns effective PRMs with minimal assumptions about expert policies. Specifically, we design a dual learning process that updates the policy and the PRM interchangeably. Our learning algorithm has customized techniques to address the challenges of scaling traditional inverse RL to LLMs. We theoretically show that our proposed learning framework can unify both online and offline PRM learning methods, justifying that rePIRL can learn PRMs with minimal assumptions. Empirical evaluations on standardized math and coding reasoning datasets demonstrate the effectiveness of rePIRL over existing methods. We further show the application of our trained PRM in test-time training, test-time scaling, and providing an early signal for training hard problems. Finally, we validate our training recipe and key design choices via a detailed ablation study.
We study inference-time reward-guided alignment for generative models. Existing methods often rely on either architecture-specific adaptations or computationally costly inference procedures. We introduce Learnable Chernoff Baselines (LCBs) as a method for efficiently and approximately sampling from the exponentially tilted kernels that arise from KL-regularized reward alignment. Using only black-box sampling access to the pretrained model, LCBs implement a form of rejection sampling with adaptively selected acceptance probabilities, which allows fine-grained control over inference-compute scaling. We establish total-variation guarantees to the ideal aligned model, and demonstrate in both continuous and discrete diffusion settings that LCB sampling closely matches ideal rejection sampling while using substantially fewer queries to the pretrained model.
Spoken dialogue is a primary source of information in videos; therefore, accurately identifying who spoke what and when is essential for deep video understanding. We introduce D-ORCA, a \textbf{d}ialogue-centric \textbf{o}mni-modal large language model optimized for \textbf{r}obust audio-visual \textbf{ca}ptioning. We further curate DVD, a large-scale, high-quality bilingual dataset comprising nearly 40,000 multi-party dialogue videos for training and 2000 videos for evaluation in English and Mandarin, addressing a critical gap in the open-source ecosystem. To ensure fine-grained captioning accuracy, we adopt group relative policy optimization with three novel reward functions that assess speaker attribution accuracy, global speech content accuracy, and sentence-level temporal boundary alignment. These rewards are derived from evaluation metrics widely used in speech processing and, to our knowledge, are applied for the first time as reinforcement learning objectives for audio-visual captioning. Extensive experiments demonstrate that D-ORCA substantially outperforms existing open-source models in speaker identification, speech recognition, and temporal grounding. Notably, despite having only 8 billion parameters, D-ORCA achieves performance competitive with Qwen3-Omni across several general-purpose audio-visual understanding benchmarks. Demos are available at \href{https://d-orca-llm.github.io/}{https://d-orca-llm.github.io/}. Our code, data, and checkpoints will be available at \href{https://github.com/WeChatCV/D-ORCA/}{https://github.com/WeChatCV/D-ORCA/}.
Training large language model (LLM) agents for adversarial games is often driven by episodic objectives such as win rate. In long-horizon settings, however, payoffs are shaped by latent strategic externalities that evolve over time, so myopic optimization and variation-based regret analyses can become vacuous even when the dynamics are predictable. To solve this problem, we introduce Implicit Strategic Optimization (ISO), a prediction-aware framework in which each agent forecasts the current strategic context and uses it to update its policy online. ISO combines a Strategic Reward Model (SRM) that estimates the long-run strategic value of actions with iso-grpo, a context-conditioned optimistic learning rule. We prove sublinear contextual regret and equilibrium convergence guarantees whose dominant terms scale with the number of context mispredictions; when prediction errors are bounded, our bounds recover the static-game rates obtained when strategic externalities are known. Experiments in 6-player No-Limit Texas Hold'em and competitive Pokemon show consistent improvements in long-term return over strong LLM and RL baselines, and graceful degradation under controlled prediction noise.
Personalizing large language models (LLMs) to individual users requires incorporating extensive interaction histories and profiles, but input token constraints make this impractical due to high inference latency and API costs. Existing approaches rely on heuristic methods such as selecting recent interactions or prompting summarization models to compress user profiles. However, these methods treat context as a monolithic whole and fail to consider how LLMs internally process and prioritize different profile components. We investigate whether LLMs' attention patterns can effectively identify important personalization signals for intelligent context compression. Through preliminary studies on representative personalization tasks, we discover that (a) LLMs' attention patterns naturally reveal important signals, and (b) fine-tuning enhances LLMs' ability to distinguish between relevant and irrelevant information. Based on these insights, we propose Attn-GS, an attention-guided context compression framework that leverages attention feedback from a marking model to mark important personalization sentences, then guides a compression model to generate task-relevant, high-quality compressed user contexts. Extensive experiments demonstrate that Attn-GS significantly outperforms various baselines across different tasks, token limits, and settings, achieving performance close to using full context while reducing token usage by 50 times.
Adaptive learning systems optimize content delivery based on performance metrics but ignore the dynamic attention fluctuations that characterize neurodivergent learners. We present AttentionGuard, a framework that detects engagement-attention states from privacy-preserving behavioral signals and adapts interface elements accordingly. Our approach models four attention states derived from ADHD phenomenology and implements five novel UI adaptation patterns including bi-directional scaffolding that responds to both understimulation and overstimulation. We validate our detection model on the OULAD dataset, achieving 87.3% classification accuracy, and demonstrate correlation with clinical ADHD profiles through cross-validation on the HYPERAKTIV dataset. A Wizard-of-Oz study with 11 adults showing ADHD characteristics found significantly reduced cognitive load in the adaptive condition (NASA-TLX: 47.2 vs 62.8, Cohen's d=1.21, p=0.008) and improved comprehension (78.4% vs 61.2%, p=0.009). Concordance analysis showed 84% agreement between wizard decisions and automated classifier predictions, supporting deployment feasibility. The system is presented as an interactive demo where observers can inspect detected attention states, observe real-time UI adaptations, and compare automated decisions with human-in-the-loop overrides. We contribute empirically validated UI patterns for attention-adaptive interfaces and evidence that behavioral attention detection can meaningfully support neurodivergent learning experiences.
Securing petroleum infrastructure requires balancing autonomous system efficiency with human judgment for threat escalation, a challenge unaddressed by classical facility location models assuming homogeneous resources. This paper formulates the Human-Robot Co-Dispatch Facility Location Problem (HRCD-FLP), a capacitated facility location variant incorporating tiered infrastructure criticality, human-robot supervision ratio constraints, and minimum utilization requirements. We evaluate command center selection across three technology maturity scenarios. Results show transitioning from conservative (1:3 human-robot supervision) to future autonomous operations (1:10) yields significant cost reduction while maintaining complete critical infrastructure coverage. For small problems, exact methods dominate in both cost and computation time; for larger problems, the proposed heuristic achieves feasible solutions in under 3 minutes with approximately 14% optimality gap where comparison is possible. From systems perspective, our work demonstrate that optimized planning for human-robot teaming is key to achieve both cost-effective and mission-reliable deployments.
Detecting symmetry is crucial for effective object grasping for several reasons. Recognizing symmetrical features or axes within an object helps in developing efficient grasp strategies, as grasping along these axes typically results in a more stable and balanced grip, thereby facilitating successful manipulation. This paper employs geometrical moments to identify symmetries and estimate orthogonal transformations, including rotations and mirror transformations, for objects centered at the frame origin. It provides distinctive metrics for detecting symmetries and estimating orthogonal transformations, encompassing rotations, reflections, and their combinations. A comprehensive methodology is developed to obtain these functions in n-dimensional space, specifically moment \( n \)-tuples. Extensive validation tests are conducted on both 2D and 3D objects to ensure the robustness and reliability of the proposed approach. The proposed method is also compared to state-of-the-art work using iterative optimization for detecting multiple planes of symmetry. The results indicate that combining our method with the iterative one yields satisfactory outcomes in terms of the number of symmetry planes detected and computation time.
Image guided robotic navigation systems often rely on reference based geometric perception pipelines, where accurate spatial mapping is established through multi stage estimation processes. In biplanar X ray guided navigation, such pipelines are widely used due to their real time capability and geometric interpretability. However, navigation reliability can be constrained by an overlooked system level failure mechanism in which installation induced structural perturbations introduced at the perception stage are progressively amplified along the perception reconstruction execution chain and dominate execution level error and tail risk behavior. This paper investigates this mechanism from a system level perspective and presents a unified error propagation modeling framework that characterizes how installation induced structural perturbations propagate and couple with pixel level observation noise through biplanar imaging, projection matrix estimation, triangulation, and coordinate mapping. Using first order analytic uncertainty propagation and Monte Carlo simulations, we analyze dominant sensitivity channels and quantify worst case error behavior beyond mean accuracy metrics. The results show that rotational installation error is a primary driver of system level error amplification, while translational misalignment of comparable magnitude plays a secondary role under typical biplanar geometries. Real biplanar X ray bench top experiments further confirm that the predicted amplification trends persist under realistic imaging conditions. These findings reveal a broader structural limitation of reference based multi stage geometric perception pipelines and provide a framework for system level reliability analysis and risk aware design in safety critical robotic navigation systems.