Text classification is the process of categorizing text documents into predefined categories or labels.
Fine-grained glomerular subtyping is central to kidney biopsy interpretation, but clinically valuable labels are scarce and difficult to obtain. Existing computational pathology approaches instead tend to evaluate coarse diseased classification under full supervision with image-only models, so it remains unclear how vision-language models (VLMs) should be adapted for clinically meaningful subtyping under data constraints. In this work, we model fine-grained glomerular subtyping as a clinically realistic few-shot problem and systematically evaluate both pathology-specialized and general-purpose vision-language models under this setting. We assess not only classification performance (accuracy, AUC, F1) but also the geometry of the learned representations, examining feature alignment between image and text embeddings and the separability of glomerular subtypes. By jointly analyzing shot count, model architecture and domain knowledge, and adaptation strategy, this study provides guidance for future model selection and training under real clinical data constraints. Our results indicate that pathology-specialized vision-language backbones, when paired with the vanilla fine-tuning, are the most effective starting point. Even with only 4-8 labeled examples per glomeruli subtype, these models begin to capture distinctions and show substantial gains in discrimination and calibration, though additional supervision continues to yield incremental improvements. We also find that the discrimination between positive and negative examples is as important as image-text alignment. Overall, our results show that supervision level and adaptation strategy jointly shape both diagnostic performance and multimodal structure, providing guidance for model selection, adaptation strategies, and annotation investment.




Deep learning models have achieved remarkable success in medical image analysis but are fundamentally constrained by the requirement for large-scale, meticulously annotated datasets. This dependency on "big data" is a critical bottleneck in the medical domain, where patient data is inherently difficult to acquire and expert annotation is expensive, particularly for rare diseases where samples are scarce by definition. To overcome this fundamental challenge, we propose a novel paradigm: Zero-Training Task-Specific Model Synthesis (ZS-TMS). Instead of adapting a pre-existing model or training a new one, our approach leverages a large-scale, pre-trained generative engine to directly synthesize the entire set of parameters for a task-specific classifier. Our framework, the Semantic-Guided Parameter Synthesizer (SGPS), takes as input minimal, multi-modal task information as little as a single example image (1-shot) and a corresponding clinical text description to directly synthesize the entire set of parameters for a task-specific classifier. The generative engine interprets these inputs to generate the weights for a lightweight, efficient classifier (e.g., an EfficientNet-V2), which can be deployed for inference immediately without any task-specific training or fine-tuning. We conduct extensive evaluations on challenging few-shot classification benchmarks derived from the ISIC 2018 skin lesion dataset and a custom rare disease dataset. Our results demonstrate that SGPS establishes a new state-of-the-art, significantly outperforming advanced few-shot and zero-shot learning methods, especially in the ultra-low data regimes of 1-shot and 5-shot classification. This work paves the way for the rapid development and deployment of AI-powered diagnostic tools, particularly for the long tail of rare diseases where data is critically limited.




The booming remote sensing (RS) technology is giving rise to a novel multimodality generalization task, which requires the model to overcome data heterogeneity while possessing powerful cross-scene generalization ability. Moreover, most vision-language models (VLMs) usually describe surface materials in RS images using universal texts, lacking proprietary linguistic prior knowledge specific to different RS vision modalities. In this work, we formalize RS multimodality generalization (RSMG) as a learning paradigm, and propose a frequency-aware vision-language multimodality generalization network (FVMGN) for RS image classification. Specifically, a diffusion-based training-test-time augmentation (DTAug) strategy is designed to reconstruct multimodal land-cover distributions, enriching input information for FVMGN. Following that, to overcome multimodal heterogeneity, a multimodal wavelet disentanglement (MWDis) module is developed to learn cross-domain invariant features by resampling low and high frequency components in the frequency domain. Considering the characteristics of RS vision modalities, shared and proprietary class texts is designed as linguistic inputs for the transformer-based text encoder to extract diverse text features. For multimodal vision inputs, a spatial-frequency-aware image encoder (SFIE) is constructed to realize local-global feature reconstruction and representation. Finally, a multiscale spatial-frequency feature alignment (MSFFA) module is suggested to construct a unified semantic space, ensuring refined multiscale alignment of different text and vision features in spatial and frequency domains. Extensive experiments show that FVMGN has the excellent multimodality generalization ability compared with state-of-the-art (SOTA) methods.




Phonocardiogram (PCG) analysis is vital for cardiovascular disease diagnosis, yet the scarcity of labeled pathological data hinders the capability of AI systems. To bridge this, we introduce H-LDM, a Hierarchical Latent Diffusion Model for generating clinically accurate and controllable PCG signals from structured metadata. Our approach features: (1) a multi-scale VAE that learns a physiologically-disentangled latent space, separating rhythm, heart sounds, and murmurs; (2) a hierarchical text-to-biosignal pipeline that leverages rich clinical metadata for fine-grained control over 17 distinct conditions; and (3) an interpretable diffusion process guided by a novel Medical Attention module. Experiments on the PhysioNet CirCor dataset demonstrate state-of-the-art performance, achieving a Fréchet Audio Distance of 9.7, a 92% attribute disentanglement score, and 87.1% clinical validity confirmed by cardiologists. Augmenting diagnostic models with our synthetic data improves the accuracy of rare disease classification by 11.3\%. H-LDM establishes a new direction for data augmentation in cardiac diagnostics, bridging data scarcity with interpretable clinical insights.




Multimodal co-embedding models, especially CLIP, have advanced the state of the art in zero-shot classification and multimedia information retrieval in recent years by aligning images and text in a shared representation space. However, such modals trained on a contrastive alignment can lack stability towards small input perturbations. Especially when dealing with manually expressed queries, minor variations in the query can cause large differences in the ranking of the best-matching results. In this paper, we present a systematic analysis of the effect of multiple classes of non-semantic query perturbations in an multimedia information retrieval scenario. We evaluate a diverse set of lexical, syntactic, and semantic perturbations across multiple CLIP variants using the TRECVID Ad-Hoc Video Search queries and the V3C1 video collection. Across models, we find that syntactic and semantic perturbations drive the largest instabilities, while brittleness is concentrated in trivial surface edits such as punctuation and case. Our results highlight robustness as a critical dimension for evaluating vision-language models beyond benchmark accuracy.
Khmer polarity classification is a fundamental natural language processing task that assigns a positive, negative, or neutral label to a given Khmer text input. Existing Khmer models typically predict the label without explaining the rationale behind the prediction. This paper proposes an explainable Khmer polarity classifier by fine-tuning an instruction-based reasoning Qwen-3 model. The notion of explainability in this paper is limited to self-explanations, which the model uses to rationalize its predictions. Experimental results show that the fine-tuned model not only predicts labels accurately but also provides reasoning by identifying polarity-related keywords or phrases to support its predictions. In addition, we contribute a new Khmer polarity dataset consisting of short- to medium-length casual, romanized, and mixed-code Khmer expressions. This dataset was constructed using both heuristic rules and human curation and is publicly available through a gated Hugging Face repository (rinabuoy/khmerpolarity_nonreasoning). The fine-tuned Qwen-3 models are also made available in the same Hugging Face account.
Despite their impressive generalization capabilities, instruction-tuned Large Language Models often underperform on text classification benchmarks. We introduce SALSA, a coherent pipeline that combines structured prompting, class-to-token mapping, and parameter-efficient fine-tuning, thereby avoiding cold-start training. Each class label is mapped to a distinct output token, and prompts are constructed to elicit a single-token response. During inference, the model's output is projected only onto the logits of the relevant class tokens, enabling efficient and accurate classification in a single forward pass. SALSA achieves state-of-the-art results across diverse benchmarks, demonstrating its robustness and scalability for LLM-based classification applications.
WordNet offers rich supersense hierarchies for nouns and verbs, yet adverbs remain underdeveloped, lacking a systematic semantic classification. We introduce a linguistically grounded supersense typology for adverbs, empirically validated through annotation, that captures major semantic domains including manner, temporal, frequency, degree, domain, speaker-oriented, and subject-oriented functions. Results from a pilot annotation study demonstrate that these categories provide broad coverage of adverbs in natural text and can be reliably assigned by human annotators. Incorporating this typology extends WordNet's coverage, aligns it more closely with linguistic theory, and facilitates downstream NLP applications such as word sense disambiguation, event extraction, sentiment analysis, and discourse modeling. We present the proposed supersense categories, annotation outcomes, and directions for future work.
Text-guided image editing has advanced rapidly with the rise of diffusion models. While flow-based inversion-free methods offer high efficiency by avoiding latent inversion, they often fail to effectively integrate source information, leading to poor background preservation, spatial inconsistencies, and over-editing due to the lack of effective integration of source information. In this paper, we present FIA-Edit, a novel inversion-free framework that achieves high-fidelity and semantically precise edits through a Frequency-Interactive Attention. Specifically, we design two key components: (1) a Frequency Representation Interaction (FRI) module that enhances cross-domain alignment by exchanging frequency components between source and target features within self-attention, and (2) a Feature Injection (FIJ) module that explicitly incorporates source-side queries, keys, values, and text embeddings into the target branch's cross-attention to preserve structure and semantics. Comprehensive and extensive experiments demonstrate that FIA-Edit supports high-fidelity editing at low computational cost (~6s per 512 * 512 image on an RTX 4090) and consistently outperforms existing methods across diverse tasks in visual quality, background fidelity, and controllability. Furthermore, we are the first to extend text-guided image editing to clinical applications. By synthesizing anatomically coherent hemorrhage variations in surgical images, FIA-Edit opens new opportunities for medical data augmentation and delivers significant gains in downstream bleeding classification. Our project is available at: https://github.com/kk42yy/FIA-Edit.
Cardiovascular disease (CVD) is a leading cause of mortality worldwide. Electrocardiograms (ECGs) are the most widely used non-invasive tool for cardiac assessment, yet large, well-annotated ECG corpora are scarce due to cost, privacy, and workflow constraints. Generating ECGs can be beneficial for the mechanistic understanding of cardiac electrical activity, enable the construction of large, heterogeneous, and unbiased datasets, and facilitate privacy-preserving data sharing. Generating realistic ECG signals from clinical context is important yet underexplored. Recent work has leveraged diffusion models for text-to-ECG generation, but two challenges remain: (i) existing methods often overlook the physiological simulator knowledge of cardiac activity; and (ii) they ignore broader, experience-based clinical knowledge grounded in real-world practice. To address these gaps, we propose SE-Diff, a novel physiological simulator and experience enhanced diffusion model for comprehensive ECG generation. SE-Diff integrates a lightweight ordinary differential equation (ODE)-based ECG simulator into the diffusion process via a beat decoder and simulator-consistent constraints, injecting mechanistic priors that promote physiologically plausible waveforms. In parallel, we design an LLM-powered experience retrieval-augmented strategy to inject clinical knowledge, providing more guidance for ECG generation. Extensive experiments on real-world ECG datasets demonstrate that SE-Diff improves both signal fidelity and text-ECG semantic alignment over baselines, proving its superiority for text-to-ECG generation. We further show that the simulator-based and experience-based knowledge also benefit downstream ECG classification.