Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
Jul 09, 2025
Abstract:We present FRaN-X, a Framing and Narratives Explorer that automatically detects entity mentions and classifies their narrative roles directly from raw text. FRaN-X comprises a two-stage system that combines sequence labeling with fine-grained role classification to reveal how entities are portrayed as protagonists, antagonists, or innocents, using a unique taxonomy of 22 fine-grained roles nested under these three main categories. The system supports five languages (Bulgarian, English, Hindi, Russian, and Portuguese) and two domains (the Russia-Ukraine Conflict and Climate Change). It provides an interactive web interface for media analysts to explore and compare framing across different sources, tackling the challenge of automatically detecting and labeling how entities are framed. Our system allows end users to focus on a single article as well as analyze up to four articles simultaneously. We provide aggregate level analysis including an intuitive graph visualization that highlights the narrative a group of articles are pushing. Our system includes a search feature for users to look up entities of interest, along with a timeline view that allows analysts to track an entity's role transitions across different contexts within the article. The FRaN-X system and the trained models are licensed under an MIT License. FRaN-X is publicly accessible at https://fran-x.streamlit.app/ and a video demonstration is available at https://youtu.be/VZVi-1B6yYk.
* 19 pages, 13 figures, submitted to EMNLP 2025 - Demo Track
Via

Jul 15, 2025
Abstract:Accurate preoperative assessment of lymph node (LN) metastasis in rectal cancer guides treatment decisions, yet conventional MRI evaluation based on morphological criteria shows limited diagnostic performance. While some artificial intelligence models have been developed, they often operate as black boxes, lacking the interpretability needed for clinical trust. Moreover, these models typically evaluate nodes in isolation, overlooking the patient-level context. To address these limitations, we introduce LRMR, an LLM-Driven Relational Multi-node Ranking framework. This approach reframes the diagnostic task from a direct classification problem into a structured reasoning and ranking process. The LRMR framework operates in two stages. First, a multimodal large language model (LLM) analyzes a composite montage image of all LNs from a patient, generating a structured report that details ten distinct radiological features. Second, a text-based LLM performs pairwise comparisons of these reports between different patients, establishing a relative risk ranking based on the severity and number of adverse features. We evaluated our method on a retrospective cohort of 117 rectal cancer patients. LRMR achieved an area under the curve (AUC) of 0.7917 and an F1-score of 0.7200, outperforming a range of deep learning baselines, including ResNet50 (AUC 0.7708). Ablation studies confirmed the value of our two main contributions: removing the relational ranking stage or the structured prompting stage led to a significant performance drop, with AUCs falling to 0.6875 and 0.6458, respectively. Our work demonstrates that decoupling visual perception from cognitive reasoning through a two-stage LLM framework offers a powerful, interpretable, and effective new paradigm for assessing lymph node metastasis in rectal cancer.
Via

Jun 13, 2025
Abstract:Advances in transformer-based language models have highlighted the benefits of language-specific pre-training on high-quality corpora. In this context, German NLP stands to gain from updated architectures and modern datasets tailored to the linguistic characteristics of the German language. GeistBERT seeks to improve German language processing by incrementally training on a diverse corpus and optimizing model performance across various NLP tasks. It was pre-trained using fairseq with standard hyperparameters, initialized from GottBERT weights, and trained on a large-scale German corpus using Whole Word Masking (WWM). Based on the pre-trained model, we derived extended-input variants using Nystr\"omformer and Longformer architectures with support for sequences up to 8k tokens. While these long-context models were not evaluated on dedicated long-context benchmarks, they are included in our release. We assessed all models on NER (CoNLL 2003, GermEval 2014) and text classification (GermEval 2018 fine/coarse, 10kGNAD) using $F_1$ score and accuracy. The GeistBERT models achieved strong performance, leading all tasks among the base models and setting a new state-of-the-art (SOTA). Notably, the base models outperformed larger models in several tasks. To support the German NLP research community, we are releasing GeistBERT under the MIT license.
Via

Jun 24, 2025
Abstract:The spread of cyber hatred has led to communal violence, fueling aggression and conflicts between various religious, ethnic, and social groups, posing a significant threat to social harmony. Despite its critical importance, the classification of communal violent text remains an underexplored area in existing research. This study aims to enhance the accuracy of detecting text that incites communal violence, focusing specifically on Bengali textual data sourced from social media platforms. We introduce a fine-tuned BanglaBERT model tailored for this task, achieving a macro F1 score of 0.60. To address the issue of data imbalance, our dataset was expanded by adding 1,794 instances, which facilitated the development and evaluation of a fine-tuned ensemble model. This ensemble model demonstrated an improved performance, achieving a macro F1 score of 0.63, thus highlighting its effectiveness in this domain. In addition to quantitative performance metrics, qualitative analysis revealed instances where the models struggled with context understanding, leading to occasional misclassifications, even when predictions were made with high confidence. Through analyzing the cosine similarity between words, we identified certain limitations in the pre-trained BanglaBERT models, particularly in their ability to distinguish between closely related communal and non-communal terms. To further interpret the model's decisions, we applied LIME, which helped to uncover specific areas where the model struggled in understanding context, contributing to errors in classification. These findings highlight the promise of NLP and interpretability tools in reducing online communal violence. Our work contributes to the growing body of research in communal violence detection and offers a foundation for future studies aiming to refine these techniques for better accuracy and societal impact.
Via

Jun 15, 2025
Abstract:Due to advances in Large Language Models (LLMs) such as ChatGPT, the boundary between human-written text and AI-generated text has become blurred. Nevertheless, recent work has demonstrated that it is possible to reliably detect GPT-generated text. In this paper, we adopt a novel strategy to adversarially transform GPT-generated text using sequence-to-sequence (Seq2Seq) models, with the goal of making the text more human-like. We experiment with the Seq2Seq models T5-small and BART which serve to modify GPT-generated sentences to include linguistic, structural, and semantic components that may be more typical of human-authored text. Experiments show that classification models trained to distinguish GPT-generated text are significantly less accurate when tested on text that has been modified by these Seq2Seq models. However, after retraining classification models on data generated by our Seq2Seq technique, the models are able to distinguish the transformed GPT-generated text from human-generated text with high accuracy. This work adds to the accumulating knowledge of text transformation as a tool for both attack -- in the sense of defeating classification models -- and defense -- in the sense of improved classifiers -- thereby advancing our understanding of AI-generated text.
Via

Jun 26, 2025
Abstract:Scene text removal (STR) aims to erase textual elements from images. It was originally intended for removing privacy-sensitiveor undesired texts from natural scene images, but is now also appliedto typographic images. STR typically detects text regions and theninpaints them. Although STR has advanced through neural networksand synthetic data, misuse risks have increased. This paper investi-gates Inverse STR (ISTR), which analyzes STR-processed images andfocuses on binary classification (detecting whether an image has un-dergone STR) and localizing removed text regions. We demonstrate inexperiments that these tasks are achievable with high accuracies, en-abling detection of potential misuse and improving STR. We also at-tempt to recover the removed text content by training a text recognizerto understand its difficulty.
* 17 pages
Via

Jul 10, 2025
Abstract:Reliable Uncertainty Quantification (UQ) and failure prediction remain open challenges for Vision-Language Models (VLMs). We introduce ViLU, a new Vision-Language Uncertainty quantification framework that contextualizes uncertainty estimates by leveraging all task-relevant textual representations. ViLU constructs an uncertainty-aware multi-modal representation by integrating the visual embedding, the predicted textual embedding, and an image-conditioned textual representation via cross-attention. Unlike traditional UQ methods based on loss prediction, ViLU trains an uncertainty predictor as a binary classifier to distinguish correct from incorrect predictions using a weighted binary cross-entropy loss, making it loss-agnostic. In particular, our proposed approach is well-suited for post-hoc settings, where only vision and text embeddings are available without direct access to the model itself. Extensive experiments on diverse datasets show the significant gains of our method compared to state-of-the-art failure prediction methods. We apply our method to standard classification datasets, such as ImageNet-1k, as well as large-scale image-caption datasets like CC12M and LAION-400M. Ablation studies highlight the critical role of our architecture and training in achieving effective uncertainty quantification. Our code is publicly available and can be found here: https://github.com/ykrmm/ViLU.
* International Conference on Computer Vision, ICCV 2025
Via

Jun 24, 2025
Abstract:Precise anomaly detection in medical images is critical for clinical decision-making. While recent unsupervised or semi-supervised anomaly detection methods trained on large-scale normal data show promising results, they lack fine-grained differentiation, such as benign vs. malignant tumors. Additionally, ultrasound (US) imaging is highly sensitive to devices and acquisition parameter variations, creating significant domain gaps in the resulting US images. To address these challenges, we propose UltraAD, a vision-language model (VLM)-based approach that leverages few-shot US examples for generalized anomaly localization and fine-grained classification. To enhance localization performance, the image-level token of query visual prototypes is first fused with learnable text embeddings. This image-informed prompt feature is then further integrated with patch-level tokens, refining local representations for improved accuracy. For fine-grained classification, a memory bank is constructed from few-shot image samples and corresponding text descriptions that capture anatomical and abnormality-specific features. During training, the stored text embeddings remain frozen, while image features are adapted to better align with medical data. UltraAD has been extensively evaluated on three breast US datasets, outperforming state-of-the-art methods in both lesion localization and fine-grained medical classification. The code will be released upon acceptance.
Via

Jul 08, 2025
Abstract:Automatic speech quality assessment plays a crucial role in the development of speech synthesis systems, but existing models exhibit significant performance variations across different granularity levels of prediction tasks. This paper proposes an enhanced MOS prediction system based on self-supervised learning speech models, incorporating a Mixture of Experts (MoE) classification head and utilizing synthetic data from multiple commercial generation models for data augmentation. Our method builds upon existing self-supervised models such as wav2vec2, designing a specialized MoE architecture to address different types of speech quality assessment tasks. We also collected a large-scale synthetic speech dataset encompassing the latest text-to-speech, speech conversion, and speech enhancement systems. However, despite the adoption of the MoE architecture and expanded dataset, the model's performance improvements in sentence-level prediction tasks remain limited. Our work reveals the limitations of current methods in handling sentence-level quality assessment, provides new technical pathways for the field of automatic speech quality assessment, and also delves into the fundamental causes of performance differences across different assessment granularities.
Via

Jul 01, 2025
Abstract:The paper explores stylometry as a method to distinguish between texts created by Large Language Models (LLMs) and humans, addressing issues of model attribution, intellectual property, and ethical AI use. Stylometry has been used extensively to characterise the style and attribute authorship of texts. By applying it to LLM-generated texts, we identify their emergent writing patterns. The paper involves creating a benchmark dataset based on Wikipedia, with (a) human-written term summaries, (b) texts generated purely by LLMs (GPT-3.5/4, LLaMa 2/3, Orca, and Falcon), (c) processed through multiple text summarisation methods (T5, BART, Gensim, and Sumy), and (d) rephrasing methods (Dipper, T5). The 10-sentence long texts were classified by tree-based models (decision trees and LightGBM) using human-designed (StyloMetrix) and n-gram-based (our own pipeline) stylometric features that encode lexical, grammatical, syntactic, and punctuation patterns. The cross-validated results reached a performance of up to .87 Matthews correlation coefficient in the multiclass scenario with 7 classes, and accuracy between .79 and 1. in binary classification, with the particular example of Wikipedia and GPT-4 reaching up to .98 accuracy on a balanced dataset. Shapley Additive Explanations pinpointed features characteristic of the encyclopaedic text type, individual overused words, as well as a greater grammatical standardisation of LLMs with respect to human-written texts. These results show -- crucially, in the context of the increasingly sophisticated LLMs -- that it is possible to distinguish machine- from human-generated texts at least for a well-defined text type.
Via
