Text classification is the process of categorizing text documents into predefined categories or labels.




While Vision-Language Models (VLMs) have achieved notable progress in computational pathology (CPath), the gigapixel scale and spatial heterogeneity of Whole Slide Images (WSIs) continue to pose challenges for multimodal understanding. Existing alignment methods struggle to capture fine-grained correspondences between textual descriptions and visual cues across thousands of patches from a slide, compromising their performance on downstream tasks. In this paper, we propose PathFLIP (Pathology Fine-grained Language-Image Pretraining), a novel framework for holistic WSI interpretation. PathFLIP decomposes slide-level captions into region-level subcaptions and generates text-conditioned region embeddings to facilitate precise visual-language grounding. By harnessing Large Language Models (LLMs), PathFLIP can seamlessly follow diverse clinical instructions and adapt to varied diagnostic contexts. Furthermore, it exhibits versatile capabilities across multiple paradigms, efficiently handling slide-level classification and retrieval, fine-grained lesion localization, and instruction following. Extensive experiments demonstrate that PathFLIP outperforms existing large-scale pathological VLMs on four representative benchmarks while requiring significantly less training data, paving the way for fine-grained, instruction-aware WSI interpretation in clinical practice.
Accurate and reliable probability predictions are essential for multi-class supervised learning tasks, where well-calibrated models enable rational decision-making. While isotonic regression has proven effective for binary calibration, its extension to multi-class problems via one-vs-rest calibration produced suboptimal results when compared to parametric methods, limiting its practical adoption. In this work, we propose novel isotonic normalization-aware techniques for multiclass calibration, grounded in natural and intuitive assumptions expected by practitioners. Unlike prior approaches, our methods inherently account for probability normalization by either incorporating normalization directly into the optimization process (NA-FIR) or modeling the problem as a cumulative bivariate isotonic regression (SCIR). Empirical evaluation on a variety of text and image classification datasets across different model architectures reveals that our approach consistently improves negative log-likelihood (NLL) and expected calibration error (ECE) metrics.




This paper introduces a confidence-weighted, credibility-aware ensemble framework for text-based emotion detection, inspired by Condorcet's Jury Theorem (CJT). Unlike conventional ensembles that often rely on homogeneous architectures, our approach combines architecturally diverse small transformer-based large language models (sLLMs) - BERT, RoBERTa, DistilBERT, DeBERTa, and ELECTRA, each fully fine-tuned for emotion classification. To preserve error diversity, we minimize parameter convergence while taking advantage of the unique biases of each model. A dual-weighted voting mechanism integrates both global credibility (validation F1 score) and local confidence (instance-level probability) to dynamically weight model contributions. Experiments on the DAIR-AI dataset demonstrate that our credibility-confidence ensemble achieves a macro F1 score of 93.5 percent, surpassing state-of-the-art benchmarks and significantly outperforming large-scale LLMs, including Falcon, Mistral, Qwen, and Phi, even after task-specific Low-Rank Adaptation (LoRA). With only 595M parameters in total, our small LLMs ensemble proves more parameter-efficient and robust than models up to 7B parameters, establishing that carefully designed ensembles of small, fine-tuned models can outperform much larger LLMs in specialized natural language processing (NLP) tasks such as emotion detection.
Introduction: Recent work suggests large language models (LLMs) can accelerate screening, but prior evaluations focus on earlier LLMs, standardized Cochrane reviews, single-model setups, and accuracy as the primary metric, leaving generalizability, configuration effects, and calibration largely unexamined. Methods: We developed OLIVER (Optimized LLM-based Inclusion and Vetting Engine for Reviews), an open-source pipeline for LLM-assisted abstract screening. We evaluated multiple contemporary LLMs across two non-Cochrane systematic reviews and performance was assessed at both the full-text screening and final inclusion stages using accuracy, AUC, and calibration metrics. We further tested an actor-critic screening framework combining two lightweight models under three aggregation rules. Results: Across individual models, performance varied widely. In the smaller Review 1 (821 abstracts, 63 final includes), several models achieved high sensitivity for final includes but at the cost of substantial false positives and poor calibration. In the larger Review 2 (7741 abstracts, 71 final includes), most models were highly specific but struggled to recover true includes, with prompt design influencing recall. Calibration was consistently weak across single-model configurations despite high overall accuracy. Actor-critic screening improved discrimination and markedly reduced calibration error in both reviews, yielding higher AUCs. Discussion: LLMs may eventually accelerate abstract screening, but single-model performance is highly sensitive to review characteristics, prompting, and calibration is limited. An actor-critic framework improves classification quality and confidence reliability while remaining computationally efficient, enabling large-scale screening at low cost.
Semi-supervised classification leverages both labeled and unlabeled data to improve predictive performance, but existing software support is fragmented across methods and modalities. We introduce ModSSC, an open source Python framework that unifies inductive and transductive semi-supervised classification in a modular code base. ModSSC implements a broad range of classical and recent algorithms, provides loaders for tabular, image, text, audio and graph datasets, and exposes a single configuration interface for specifying datasets, models and evaluation protocols. It supports both lightweight classical methods on small datasets running on CPU and recent deep approaches that can exploit multiple GPUs within the same experimental framework. Experiments are described declaratively in YAML, which facilitates reproducing existing work and running large comparative studies. ModSSC 1.0.0 is released under the MIT license with extensive documentation and tests, and is available at https://github.com/ModSSC/ModSSC.
Vision transformers in vision-language models apply uniform computational effort across all images, expending 175.33 GFLOPs (ViT-L/14) whether analysing a straightforward product photograph or a complex street scene. We propose ICAR (Image Complexity-Aware Retrieval), which enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both reduced-compute and full-compute processing. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance with 0.959 correlation with human judgement (Pearson) and 4.4x speedup. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% practical speedup while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.
Alzheimer's Disease (AD) is a progressive neurodegenerative condition that adversely affects cognitive abilities. Language-related changes can be automatically identified through the analysis of outputs from linguistic assessment tasks, such as picture description. Language models show promise as a basis for screening tools for AD, but their limited interpretability poses a challenge in distinguishing true linguistic markers of cognitive decline from surface-level textual patterns. To address this issue, we examine how surface form variation affects classification performance, with the goal of assessing the ability of language models to represent underlying semantic indicators. We introduce a novel approach where texts surface forms are transformed by altering syntax and vocabulary while preserving semantic content. The transformations significantly modify the structure and lexical content, as indicated by low BLEU and chrF scores, yet retain the underlying semantics, as reflected in high semantic similarity scores, isolating the effect of semantic information, and finding models perform similarly to if they were using the original text, with only small deviations in macro-F1. We also investigate whether language from picture descriptions retains enough detail to reconstruct the original image using generative models. We found that image-based transformations add substantial noise reducing classification accuracy. Our methodology provides a novel way of looking at what features influence model predictions, and allows the removal of possible spurious correlations. We find that just using semantic information, language model based classifiers can still detect AD. This work shows that difficult to detect semantic impairment can be identified, addressing an overlooked feature of linguistic deterioration, and opening new pathways for early detection systems.
LLMs are highly sensitive to prompt design, but handcrafting effective prompts is difficult and often requires intricate crafting of few-shot examples. We propose a fast automatic prompt construction algorithm that augments human instructions by generating a small set of few shot examples. Our method iteratively replaces/drops/keeps few-shot examples using Monte Carlo Shapley estimation of example utility. For faster execution, we use aggressive subsampling and a replay buffer for faster evaluations. Our method can be run using different compute time budgets. On a limited budget, we outperform existing automatic prompting methods on text simplification and GSM8K and obtain second best results on classification and summarization. With an extended, but still modest compute budget we set a new state of the art among automatic prompting methods on classification, simplification and GSM8K. Our results show that carefully constructed examples, rather than exhaustive instruction search, are the dominant lever for fast and data efficient prompt engineering. Our code is available at https://github.com/Batorskq/PIAST.




Large language model (LLM) activations are notoriously difficult to understand, with most existing techniques using complex, specialized methods for interpreting them. Recent work has proposed a simpler approach known as LatentQA: training LLMs to directly accept LLM activations as inputs and answer arbitrary questions about them in natural language. However, prior work has focused on narrow task settings for both training and evaluation. In this paper, we instead take a generalist perspective. We evaluate LatentQA-trained models, which we call Activation Oracles (AOs), in far out-of-distribution settings and examine how performance scales with training data diversity. We find that AOs can recover information fine-tuned into a model (e.g., biographical knowledge or malign propensities) that does not appear in the input text, despite never being trained with activations from a fine-tuned model. Our main evaluations are four downstream tasks where we can compare to prior white- and black-box techniques. We find that even narrowly-trained LatentQA models can generalize well, and that adding additional training datasets (such as classification tasks and a self-supervised context prediction task) yields consistent further improvements. Overall, our best AOs match or exceed prior white-box baselines on all four tasks and are the best method on 3 out of 4. These results suggest that diversified training to answer natural-language queries imparts a general capability to verbalize information about LLM activations.




The development of clinical-grade artificial intelligence in pathology is limited by the scarcity of diverse, high-quality annotated datasets. Generative models offer a potential solution but suffer from semantic instability and morphological hallucinations that compromise diagnostic reliability. To address this challenge, we introduce a Correlation-Regulated Alignment Framework for Tissue Synthesis (CRAFTS), the first generative foundation model for pathology-specific text-to-image synthesis. By leveraging a dual-stage training strategy on approximately 2.8 million image-caption pairs, CRAFTS incorporates a novel alignment mechanism that suppresses semantic drift to ensure biological accuracy. This model generates diverse pathological images spanning 30 cancer types, with quality rigorously validated by objective metrics and pathologist evaluations. Furthermore, CRAFTS-augmented datasets enhance the performance across various clinical tasks, including classification, cross-modal retrieval, self-supervised learning, and visual question answering. In addition, coupling CRAFTS with ControlNet enables precise control over tissue architecture from inputs such as nuclear segmentation masks and fluorescence images. By overcoming the critical barriers of data scarcity and privacy concerns, CRAFTS provides a limitless source of diverse, annotated histology data, effectively unlocking the creation of robust diagnostic tools for rare and complex cancer phenotypes.