Text classification is the process of categorizing text documents into predefined categories or labels.
Paleography is the study of ancient and historical handwriting, its key objectives include the dating of manuscripts and understanding the evolution of writing. Estimating when a document was written and tracing the development of scripts and writing styles can be aided by identifying the individual scribes who contributed to a medieval manuscript. Although digital technologies have made significant progress in this field, the general problem remains unsolved and continues to pose open challenges. ... We previously proposed an approach focused on identifying specific letters or abbreviations that characterize each writer. In that study, we considered the letter "a", as it was widely present on all pages of text and highly distinctive, according to the suggestions of expert paleographers. We used template matching techniques to detect the occurrences of the character "a" on each page and the convolutional neural network (CNN) to attribute each instance to the correct scribe. Moving from the interesting results achieved from this previous system and being aware of the limitations of the template matching technique, which requires an appropriate threshold to work, we decided to experiment in the same framework with the use of the YOLO object detection model to identify the scribe who contributed to the writing of different medieval books. We considered the fifth version of YOLO to implement the YOLO object detection model, which completely substituted the template matching and CNN used in the previous work. The experimental results demonstrate that YOLO effectively extracts a greater number of letters considered, leading to a more accurate second-stage classification. Furthermore, the YOLO confidence score provides a foundation for developing a system that applies a rejection threshold, enabling reliable writer identification even in unseen manuscripts.
Transformer classifiers such as BERT deliver impressive closed-set accuracy, yet they remain brittle when confronted with inputs from unseen categories--a common scenario for deployed NLP systems. We investigate Open-Set Recognition (OSR) for text by porting the feature attenuation hypothesis from computer vision to transformers and by benchmarking it against state-of-the-art baselines. Concretely, we adapt the COSTARR framework--originally designed for classification in computer vision--to two modest language models (BERT (base) and GPT-2) trained to label 176 arXiv subject areas. Alongside COSTARR, we evaluate Maximum Softmax Probability (MSP), MaxLogit, and the temperature-scaled free-energy score under the OOSA and AUOSCR metrics. Our results show (i) COSTARR extends to NLP without retraining but yields no statistically significant gain over MaxLogit or MSP, and (ii) free-energy lags behind all other scores in this high-class-count setting. The study highlights both the promise and the current limitations of transplanting vision-centric OSR ideas to language models, and points toward the need for larger backbones and task-tailored attenuation strategies.
While foundation models in radiology are expected to be applied to various clinical tasks, computational cost constraints remain a major challenge when training on 3D-CT volumetric data. In this study, we propose TotalFM, a radiological foundation model that efficiently learns the correspondence between 3D-CT images and linguistic expressions based on the concept of organ separation, utilizing a large-scale dataset of 140,000 series. By automating the creation of organ volume and finding-sentence pairs through segmentation techniques and Large Language Model (LLM)-based radiology report processing, and by combining self-supervised pre-training via VideoMAE with contrastive learning using volume-text pairs, we aimed to balance computational efficiency and representation capability. In zero-shot organ-wise lesion classification tasks, the proposed model achieved higher F1 scores in 83% (5/6) of organs compared to CT-CLIP and 64% (9/14) of organs compared to Merlin. These results suggest that the proposed model exhibits high generalization performance in a clinical evaluation setting using actual radiology report sentences. Furthermore, in zero-shot finding-wise lesion classification tasks, our model achieved a higher AUROC in 83% (25/30) of finding categories compared to Merlin. We also confirmed performance comparable to existing Vision-Language Models (VLMs) in radiology report generation tasks. Our results demonstrate that the organ-separated learning framework can serve as a realistic and effective design guideline for the practical implementation of 3D-CT foundation models.
This study presents a hybrid deep learning architecture that integrates LSTM, CNN, and an Attention mechanism to enhance the classification of web content based on text. Pretrained GloVe embeddings are used to represent words as dense vectors that preserve semantic similarity. The CNN layer extracts local n-gram patterns and lexical features, while the LSTM layer models long-range dependencies and sequential structure. The integrated Attention mechanism enables the model to focus selectively on the most informative parts of the input sequence. A 5-fold cross-validation setup was used to assess the robustness and generalizability of the proposed solution. Experimental results show that the hybrid LSTM-CNN-Attention model achieved outstanding performance, with an accuracy of 0.98, precision of 0.94, recall of 0.92, and F1-score of 0.93. These results surpass the performance of baseline models based solely on CNNs, LSTMs, or transformer-based classifiers such as BERT. The combination of neural network components enabled the model to effectively capture both fine-grained text structures and broader semantic context. Furthermore, the use of GloVe embeddings provided an efficient and effective representation of textual data, making the model suitable for integration into systems with real-time or near-real-time requirements. The proposed hybrid architecture demonstrates high effectiveness in text-based web content classification, particularly in tasks requiring both syntactic feature extraction and semantic interpretation. By combining presented mechanisms, the model addresses the limitations of individual architectures and achieves improved generalization. These findings support the broader use of hybrid deep learning approaches in NLP applications, especially where complex, unstructured textual data must be processed and classified with high reliability.
In the rapidly evolving landscape of enterprise natural language processing (NLP), the demand for efficient, lightweight models capable of handling multi-domain text automation tasks has intensified. This study conducts a comparative analysis of three prominent lightweight Transformer models - DistilBERT, MiniLM, and ALBERT - across three distinct domains: customer sentiment classification, news topic classification, and toxicity and hate speech detection. Utilizing datasets from IMDB, AG News, and the Measuring Hate Speech corpus, we evaluated performance using accuracy-based metrics including accuracy, precision, recall, and F1-score, as well as efficiency metrics such as model size, inference time, throughput, and memory usage. Key findings reveal that no single model dominates all performance dimensions. ALBERT achieves the highest task-specific accuracy in multiple domains, MiniLM excels in inference speed and throughput, and DistilBERT demonstrates the most consistent accuracy across tasks while maintaining competitive efficiency. All results reflect controlled fine-tuning under fixed enterprise-oriented constraints rather than exhaustive hyperparameter optimization. These results highlight trade-offs between accuracy and efficiency, recommending MiniLM for latency-sensitive enterprise applications, DistilBERT for balanced performance, and ALBERT for resource-constrained environments.
Diabetic retinopathy (DR) is a leading cause of preventable blindness worldwide, demanding accurate automated diagnostic systems. While general-domain vision-language models like Contrastive Language-Image Pre-Training (CLIP) perform well on natural image tasks, they struggle in medical domain applications, particularly in cross-modal retrieval for ophthalmological images. We propose a novel knowledge-enhanced joint embedding framework that integrates retinal fundus images, clinical text, and structured patient data through a multimodal transformer architecture to address the critical gap in medical image-text alignment. Our approach employs separate encoders for each modality: a Vision Transformer (ViT-B/16) for retinal images, Bio-ClinicalBERT for clinical narratives, and a multilayer perceptron for structured demographic and clinical features. These modalities are fused through a joint transformer with modality-specific embeddings, trained using multiple objectives including contrastive losses between modality pairs, reconstruction losses for images and text, and classification losses for DR severity grading according to ICDR and SDRG schemes. Experimental results on the Brazilian Multilabel Ophthalmological Dataset (BRSET) demonstrate significant improvements over baseline models. Our framework achieves near-perfect text-to-image retrieval performance with Recall@1 of 99.94% compared to fine-tuned CLIP's 1.29%, while maintaining state-of-the-art classification accuracy of 97.05% for SDRG and 97.97% for ICDR. Furthermore, zero-shot evaluation on the unseen DeepEyeNet dataset validates strong generalizability with 93.95% Recall@1 versus 0.22% for fine-tuned CLIP. These results demonstrate that our multimodal training approach effectively captures cross-modal relationships in the medical domain, establishing both superior retrieval capabilities and robust diagnostic performance.
We introduce EmoLoom-2B, a lightweight and reproducible pipeline that turns small language models under 2B parameters into fast screening candidates for joint emotion classification and Valence-Arousal-Dominance prediction. To ensure protocol-faithful and fair evaluation, we unify data loading, training, and inference under a single JSON input-output contract and remove avoidable variance by adopting KV-off decoding as the default setting. We incorporate two orthogonal semantic regularizers: a VAD-preserving constraint that aligns generated text with target VAD triples, and a lightweight external appraisal classifier that provides training-time guidance on goal attainment, controllability, certainty, and fairness without injecting long rationales. To improve polarity sensitivity, we introduce Valence Flip augmentation based on mirrored emotional pairs. During supervised fine-tuning, we apply A/B mixture sampling with entropy-aware temperature scheduling to balance coverage and convergence. Using Qwen-1.8B-Chat as the base model, EmoLoom-2B achieves strong performance on GoEmotions and EmpatheticDialogues, and demonstrates robust cross-corpus generalization on DailyDialog. The proposed recipe is budget-aware, auditable, and re-entrant, serving as a dependable screening pass before heavier training or multimodal fusion.
Vision-Language Models (VLMs) learn powerful multimodal representations through large-scale image-text pretraining, but adapting them to hierarchical classification is underexplored. Standard approaches treat labels as flat categories and require full fine-tuning, which is expensive and produces inconsistent predictions across taxonomy levels. We propose an efficient hierarchy-aware fine-tuning framework that updates a few parameters while enforcing structural consistency. We combine two objectives: Tree-Path KL Divergence (TP-KL) aligns predictions along the ground-truth label path for vertical coherence, while Hierarchy-Sibling Smoothed Cross-Entropy (HiSCE) encourages consistent predictions among sibling classes. Both losses work in the VLM's shared embedding space and integrate with lightweight LoRA adaptation. Experiments across multiple benchmarks show consistent improvements in Full-Path Accuracy and Tree-based Inconsistency Error with minimal parameter overhead. Our approach provides an efficient strategy for adapting VLMs to structured taxonomies.




The success of agricultural artificial intelligence depends heavily on large, diverse, and high-quality plant image datasets, yet collecting such data in real field conditions is costly, labor intensive, and seasonally constrained. This paper investigates diffusion-based generative modeling to address these challenges through plant image synthesis, indoor-to-outdoor translation, and expert preference aligned fine tuning. First, a Stable Diffusion model is fine tuned on captioned indoor and outdoor plant imagery to generate realistic, text conditioned images of canola and soybean. Evaluation using Inception Score, Frechet Inception Distance, and downstream phenotype classification shows that synthetic images effectively augment training data and improve accuracy. Second, we bridge the gap between high resolution indoor datasets and limited outdoor imagery using DreamBooth-based text inversion and image guided diffusion, generating translated images that enhance weed detection and classification with YOLOv8. Finally, a preference guided fine tuning framework trains a reward model on expert scores and applies reward weighted updates to produce more stable and expert aligned outputs. Together, these components demonstrate a practical pathway toward data efficient generative pipelines for agricultural AI.
We present a training-free method for detecting valid mathematical reasoning in large language models through spectral analysis of attention patterns. By treating attention matrices as adjacency matrices of dynamic graphs over tokens, we extract four interpretable spectral diagnostics, the Fiedler value (algebraic connectivity), high-frequency energy ratio (HFER), graph signal smoothness, and spectral entropy, that exhibit statistically significant differences between valid and invalid mathematical proofs. Experiments across seven transformer models from four independent architectural families (Meta Llama, Alibaba Qwen, Microsoft Phi, and Mistral AI) demonstrate that this spectral signature produces effect sizes up to Cohen's $d = 3.30$ ($p < 10^{-116}$), enabling 85.0--95.6\% classification accuracy under rigorous evaluation, with calibrated thresholds reaching 93--95\% on the full dataset. The method requires no training data, fine-tuning, or learned classifiers: a single threshold on a spectral metric suffices for high accuracy. Through systematic label correction, we discover that the spectral method detects logical coherence rather than compiler acceptance, identifying mathematically valid proofs that formal verifiers reject due to technical failures. We further identify an architectural dependency: Mistral-7B's Sliding Window Attention shifts the discriminative signal from HFER to late-layer Smoothness ($d = 2.09$, $p_{\text{MW}} = 1.16 \times 10^{-48}$), revealing that attention mechanism design affects which spectral features capture reasoning validity. These findings establish spectral graph analysis as a principled framework for reasoning verification with immediate applications to hallucination detection and AI safety monitoring.