Text classification is the process of categorizing text documents into predefined categories or labels.
This paper presents ACT (Allocate Connections between Texts), a novel three-stage algorithm for the automatic detection of biblical quotations in Rabbinic literature. Unlike existing text reuse frameworks that struggle with short, paraphrased, or structurally embedded quotations, ACT combines a morphology-aware alignment algorithm with a context-sensitive enrichment stage that identifies complex citation patterns such as "Wave" and "Echo" quotations. Our approach was evaluated against leading systems, including Dicta, Passim, Text-Matcher, as well as human-annotated critical editions. We further assessed three ACT configurations to isolate the contribution of each component. Results demonstrate that the full ACT pipeline (ACT-QE) outperforms all baselines, achieving an F1 score of 0.91, with superior Recall (0.89) and Precision (0.94). Notably, ACT-2, which lacks stylistic enrichment, achieves higher Recall (0.90) but suffers in Precision, while ACT-3, using longer n-grams, offers a tradeoff between coverage and specificity. In addition to improving quotation detection, ACT's ability to classify stylistic patterns across corpora opens new avenues for genre classification and intertextual analysis. This work contributes to digital humanities and computational philology by addressing the methodological gap between exhaustive machine-based detection and human editorial judgment. ACT lays a foundation for broader applications in historical textual analysis, especially in morphologically rich and citation-dense traditions like Aggadic literature.




Developing open-set classification methods capable of classifying in-distribution (ID) data while detecting out-of-distribution (OOD) samples is essential for deploying graph neural networks (GNNs) in open-world scenarios. Existing methods typically treat all OOD samples as a single class, despite real-world applications, especially high-stake settings such as fraud detection and medical diagnosis, demanding deeper insights into OOD samples, including their probable labels. This raises a critical question: can OOD detection be extended to OOD classification without true label information? To address this question, we propose a Coarse-to-Fine open-set Classification (CFC) framework that leverages large language models (LLMs) for graph datasets. CFC consists of three key components: a coarse classifier that uses LLM prompts for OOD detection and outlier label generation, a GNN-based fine classifier trained with OOD samples identified by the coarse classifier for enhanced OOD detection and ID classification, and refined OOD classification achieved through LLM prompts and post-processed OOD labels. Unlike methods that rely on synthetic or auxiliary OOD samples, CFC employs semantic OOD instances that are genuinely out-of-distribution based on their inherent meaning, improving interpretability and practical utility. Experimental results show that CFC improves OOD detection by ten percent over state-of-the-art methods on graph and text domains and achieves up to seventy percent accuracy in OOD classification on graph datasets.
Traditional Convolutional Neural Networks have been successful in capturing local, position-invariant features in text, but their capacity to model complex transformation within language can be further explored. In this work, we explore a novel approach by integrating Lie Convolutions into Convolutional-based sentence classifiers, inspired by the ability of Lie group operations to capture complex, non-Euclidean symmetries. Our proposed models SCLie and DPCLie empirically outperform traditional Convolutional-based sentence classifiers, suggesting that Lie-based models relatively improve the accuracy by capturing transformations not commonly associated with language. Our findings motivate more exploration of new paradigms in language modeling.




Multimodal chest X-Ray analysis often fine-tunes large vision-language models, which is computationally costly. We study parameter-efficient training (PET) strategies, including frozen encoders, BitFit, LoRA, and adapters for multi-label classification on the Indiana University Chest X-Ray dataset (3,851 image-report pairs; 579 test samples). To mitigate data leakage, we redact pathology terms from reports used as text inputs while retaining clinical context. Under a fixed parameter budget (2.37M parameters, 2.51% of total), all PET variants achieve AUROC between 0.892 and 0.908, outperforming full fine-tuning (0.770 AUROC), which uses 94.3M trainable parameters, a 40x reduction. External validation on CheXpert (224,316 images, 58x larger) confirms scalability: all PET methods achieve >0.69 AUROC with <9% trainable parameters, with Adapter achieving best performance (0.7214 AUROC). Budget-matched comparisons reveal that vision-only models (0.653 AUROC, 1.06M parameters) outperform budget-matched multimodal models (0.641 AUROC, 1.06M parameters), indicating improvements arise primarily from parameter allocation rather than cross-modal synergy. While PET methods show degraded calibration (ECE: 0.29-0.34) compared to simpler models (ECE: 0.049), this represents a tractable limitation addressable through post-hoc calibration methods. These findings demonstrate that frozen encoder strategies provide superior discrimination at substantially reduced computational cost, though calibration correction is essential for clinical deployment.




Extracting structured information from zeolite synthesis experimental procedures is critical for materials discovery, yet existing methods have not systematically evaluated Large Language Models (LLMs) for this domain-specific task. This work addresses a fundamental question: what is the efficacy of different prompting strategies when applying LLMs to scientific information extraction? We focus on four key subtasks: event type classification (identifying synthesis steps), trigger text identification (locating event mentions), argument role extraction (recognizing parameter types), and argument text extraction (extracting parameter values). We evaluate four prompting strategies - zero-shot, few-shot, event-specific, and reflection-based - across six state-of-the-art LLMs (Gemma-3-12b-it, GPT-5-mini, O4-mini, Claude-Haiku-3.5, DeepSeek reasoning and non-reasoning) using the ZSEE dataset of 1,530 annotated sentences. Results demonstrate strong performance on event type classification (80-90\% F1) but modest performance on fine-grained extraction tasks, particularly argument role and argument text extraction (50-65\% F1). GPT-5-mini exhibits extreme prompt sensitivity with 11-79\% F1 variation. Notably, advanced prompting strategies provide minimal improvements over zero-shot approaches, revealing fundamental architectural limitations. Error analysis identifies systematic hallucination, over-generalization, and inability to capture synthesis-specific nuances. Our findings demonstrate that while LLMs achieve high-level understanding, precise extraction of experimental parameters requires domain-adapted models, providing quantitative benchmarks for scientific information extraction.
The human hand is our primary interface to the physical world, yet egocentric perception rarely knows when, where, or how forcefully it makes contact. Robust wearable tactile sensors are scarce, and no existing in-the-wild datasets align first-person video with full-hand touch. To bridge the gap between visual perception and physical interaction, we present OpenTouch, the first in-the-wild egocentric full-hand tactile dataset, containing 5.1 hours of synchronized video-touch-pose data and 2,900 curated clips with detailed text annotations. Using OpenTouch, we introduce retrieval and classification benchmarks that probe how touch grounds perception and action. We show that tactile signals provide a compact yet powerful cue for grasp understanding, strengthen cross-modal alignment, and can be reliably retrieved from in-the-wild video queries. By releasing this annotated vision-touch-pose dataset and benchmark, we aim to advance multimodal egocentric perception, embodied learning, and contact-rich robotic manipulation.
Echocardiography is the most widely used imaging modality in cardiology, yet its interpretation remains labor-intensive and inherently multimodal, requiring view recognition, quantitative measurements, qualitative assessments, and guideline-based reasoning. While recent vision-language models (VLMs) have achieved broad success in natural images and certain medical domains, their potential in echocardiography has been limited by the lack of large-scale, clinically grounded image-text datasets and the absence of measurement-based reasoning central to echo interpretation. We introduce EchoGround-MIMIC, the first measurement-grounded multimodal echocardiography dataset, comprising 19,065 image-text pairs from 1,572 patients with standardized views, structured measurements, measurement-grounded captions, and guideline-derived disease labels. Building on this resource, we propose EchoVLM, a vision-language model that incorporates two novel pretraining objectives: (i) a view-informed contrastive loss that encodes the view-dependent structure of echocardiographic imaging, and (ii) a negation-aware contrastive loss that distinguishes clinically critical negative from positive findings. Across five types of clinical applications with 36 tasks spanning multimodal disease classification, image-text retrieval, view classification, chamber segmentation, and landmark detection, EchoVLM achieves state-of-the-art performance (86.5% AUC in zero-shot disease classification and 95.1% accuracy in view classification). We demonstrate that clinically grounded multimodal pretraining yields transferable visual representations and establish EchoVLM as a foundation model for end-to-end echocardiography interpretation. We will release EchoGround-MIMIC and the data curation code, enabling reproducibility and further research in multimodal echocardiography interpretation.
Hallucinations in Large Language Models (LLMs) pose a significant challenge, generating misleading or unverifiable content that undermines trust and reliability. Existing evaluation methods, such as KnowHalu, employ multi-stage verification but suffer from high computational costs. To address this, we integrate the Hughes Hallucination Evaluation Model (HHEM), a lightweight classification-based framework that operates independently of LLM-based judgments, significantly improving efficiency while maintaining high detection accuracy. We conduct a comparative analysis of hallucination detection methods across various LLMs, evaluating True Positive Rate (TPR), True Negative Rate (TNR), and Accuracy on question-answering (QA) and summarization tasks. Our results show that HHEM reduces evaluation time from 8 hours to 10 minutes, while HHEM with non-fabrication checking achieves the highest accuracy \(82.2\%\) and TPR \(78.9\%\). However, HHEM struggles with localized hallucinations in summarization tasks. To address this, we introduce segment-based retrieval, improving detection by verifying smaller text components. Additionally, our cumulative distribution function (CDF) analysis indicates that larger models (7B-9B parameters) generally exhibit fewer hallucinations, while intermediate-sized models show higher instability. These findings highlight the need for structured evaluation frameworks that balance computational efficiency with robust factual validation, enhancing the reliability of LLM-generated content.




Vision-Language Models (VLMs) have shown strong performance in zero-shot image classification tasks. However, existing methods, including Contrastive Language-Image Pre-training (CLIP), all rely on annotated text-to-image pairs for aligning visual and textual modalities. This dependency introduces substantial cost and accuracy requirement in preparing high-quality datasets. At the same time, processing data from two modes also requires dual-tower encoders for most models, which also hinders their lightweight. To address these limitations, we introduce a ``Contrastive Language-Image Pre-training via Large-Language-Model-based Generation (LGCLIP)" framework. LGCLIP leverages a Large Language Model (LLM) to generate class-specific prompts that guide a diffusion model in synthesizing reference images. Afterwards these generated images serve as visual prototypes, and the visual features of real images are extracted and compared with the visual features of these prototypes to achieve comparative prediction. By optimizing prompt generation through the LLM and employing only a visual encoder, LGCLIP remains lightweight and efficient. Crucially, our framework requires only class labels as input during whole experimental procedure, eliminating the need for manually annotated image-text pairs and extra pre-processing. Experimental results validate the feasibility and efficiency of LGCLIP, demonstrating great performance in zero-shot classification tasks and establishing a novel paradigm for classification.




Vector Similarity Search (VSS) in high-dimensional spaces is rapidly emerging as core functionality in next-generation database systems for numerous data-intensive services -- from embedding lookups in large language models (LLMs), to semantic information retrieval and recommendation engines. Current benchmarks, however, evaluate VSS primarily on the recall-latency trade-off against a ground truth defined solely by distance metrics, neglecting how retrieval quality ultimately impacts downstream tasks. This disconnect can mislead both academic research and industrial practice. We present Iceberg, a holistic benchmark suite for end-to-end evaluation of VSS methods in realistic application contexts. From a task-centric view, Iceberg uncovers the Information Loss Funnel, which identifies three principal sources of end-to-end performance degradation: (1) Embedding Loss during feature extraction; (2) Metric Misuse, where distances poorly reflect task relevance; (3) Data Distribution Sensitivity, highlighting index robustness across skews and modalities. For a more comprehensive assessment, Iceberg spans eight diverse datasets across key domains such as image classification, face recognition, text retrieval, and recommendation systems. Each dataset, ranging from 1M to 100M vectors, includes rich, task-specific labels and evaluation metrics, enabling assessment of retrieval algorithms within the full application pipeline rather than in isolation. Iceberg benchmarks 13 state-of-the-art VSS methods and re-ranks them based on application-level metrics, revealing substantial deviations from traditional rankings derived purely from recall-latency evaluations. Building on these insights, we define a set of task-centric meta-features and derive an interpretable decision tree to guide practitioners in selecting and tuning VSS methods for their specific workloads.