Abstract:We introduce GigaEmbeddings, a novel framework for training high-performance Russian-focused text embeddings through hierarchical instruction tuning of the decoder-only LLM designed specifically for Russian language (GigaChat-3B). Our three-stage pipeline, comprising large-scale contrastive pre-training in web-scale corpora, fine-tuning with hard negatives, and multitask generalization across retrieval, classification, and clustering tasks, addresses key limitations of existing methods by unifying diverse objectives and leveraging synthetic data generation. Architectural innovations include bidirectional attention for contextual modeling, latent attention pooling for robust sequence aggregation, and strategic pruning of 25% of transformer layers to enhance efficiency without compromising performance. Evaluated on the ruMTEB benchmark spanning 23 multilingual tasks, GigaEmbeddings achieves state-of-the-art results (69.1 avg. score), outperforming strong baselines with a larger number of parameters.
Abstract:Generative large language models (LLMs) have become crucial for modern NLP research and applications across various languages. However, the development of foundational models specifically tailored to the Russian language has been limited, primarily due to the significant computational resources required. This paper introduces the GigaChat family of Russian LLMs, available in various sizes, including base models and instruction-tuned versions. We provide a detailed report on the model architecture, pre-training process, and experiments to guide design choices. In addition, we evaluate their performance on Russian and English benchmarks and compare GigaChat with multilingual analogs. The paper presents a system demonstration of the top-performing models accessible via an API, a Telegram bot, and a Web interface. Furthermore, we have released three open GigaChat models in open-source (https://huggingface.co/ai-sage), aiming to expand NLP research opportunities and support the development of industrial solutions for the Russian language.