Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
This work focuses on national-scale land-use/land-cover (LULC) semantic segmentation using ALOS-2 single-polarization (HH) SAR data over Japan, together with a companion binary water detection task. Building on SAR-W-MixMAE self-supervised pretraining [1], we address common SAR dense-prediction failure modes, boundary over-smoothing, missed thin/slender structures, and rare-class degradation under long-tailed labels, without increasing pipeline complexity. We introduce three lightweight refinements: (i) injecting high-resolution features into multi-scale decoding, (ii) a progressive refine-up head that alternates convolutional refinement and stepwise upsampling, and (iii) an $α$-scale factor that tempers class reweighting within a focal+dice objective. The resulting model yields consistent improvements on the Japan-wide ALOS-2 LULC benchmark, particularly for under-represented classes, and improves water detection across standard evaluation metrics.
Glass surface ubiquitous in both daily life and professional environments presents a potential threat to vision-based systems, such as robot and drone navigation. To solve this challenge, most recent studies have shown significant interest in Video Glass Surface Detection (VGSD). We observe that objects in the reflection (or transmission) layer appear farther from the glass surfaces. Consequently, in video motion scenarios, the notable reflected (or transmitted) objects on the glass surface move slower than objects in non-glass regions within the same spatial plane, and this motion inconsistency can effectively reveal the presence of glass surfaces. Based on this observation, we propose a novel network, named MVGD-Net, for detecting glass surfaces in videos by leveraging motion inconsistency cues. Our MVGD-Net features three novel modules: the Cross-scale Multimodal Fusion Module (CMFM) that integrates extracted spatial features and estimated optical flow maps, the History Guided Attention Module (HGAM) and Temporal Cross Attention Module (TCAM), both of which further enhances temporal features. A Temporal-Spatial Decoder (TSD) is also introduced to fuse the spatial and temporal features for generating the glass region mask. Furthermore, for learning our network, we also propose a large-scale dataset, which comprises 312 diverse glass scenarios with a total of 19,268 frames. Extensive experiments demonstrate that our MVGD-Net outperforms relevant state-of-the-art methods.
Underwater video analysis is particularly challenging due to factors such as low lighting, color distortion, and turbidity, which compromise visual data quality and directly impact the performance of perception modules in robotic applications. This work proposes AquaFeat+, a plug-and-play pipeline designed to enhance features specifically for automated vision tasks, rather than for human perceptual quality. The architecture includes modules for color correction, hierarchical feature enhancement, and an adaptive residual output, which are trained end-to-end and guided directly by the loss function of the final application. Trained and evaluated in the FishTrack23 dataset, AquaFeat+ achieves significant improvements in object detection, classification, and tracking metrics, validating its effectiveness for enhancing perception tasks in underwater robotic applications.
Accurately localizing 3D objects like pedestrians, cyclists, and other vehicles is essential in Autonomous Driving. To ensure high detection performance, Autonomous Vehicles complement RGB cameras with LiDAR sensors, but effectively combining these data sources for 3D object detection remains challenging. We propose LCF3D, a novel sensor fusion framework that combines a 2D object detector on RGB images with a 3D object detector on LiDAR point clouds. By leveraging multimodal fusion principles, we compensate for inaccuracies in the LiDAR object detection network. Our solution combines two key principles: (i) late fusion, to reduce LiDAR False Positives by matching LiDAR 3D detections with RGB 2D detections and filtering out unmatched LiDAR detections; and (ii) cascade fusion, to recover missed objects from LiDAR by generating new 3D frustum proposals corresponding to unmatched RGB detections. Experiments show that LCF3D is beneficial for domain generalization, as it turns out to be successful in handling different sensor configurations between training and testing domains. LCF3D achieves significant improvements over LiDAR-based methods, particularly for challenging categories like pedestrians and cyclists in the KITTI dataset, as well as motorcycles and bicycles in nuScenes. Code can be downloaded from: https://github.com/CarloSgaravatti/LCF3D.
The safety validation of autonomous robotic vehicles hinges on systematically testing their planning and control stacks against rare, safety-critical scenarios. Mining these long-tail events from massive real-world driving logs is therefore a critical step in the robotic development lifecycle. The goal of the Scenario Mining task is to retrieve useful information to enable targeted re-simulation, regression testing, and failure analysis of the robot's decision-making algorithms. RefAV, introduced by the Argoverse team, is an end-to-end framework that uses large language models (LLMs) to spatially and temporally localize scenarios described in natural language. However, this process performs retrieval on trajectory labels, ignoring the direct connection between natural language and raw RGB images, which runs counter to the intuition of video retrieval; it also depends on the quality of upstream 3D object detection and tracking. Further, inaccuracies in trajectory data lead to inaccuracies in downstream spatial and temporal localization. To address these issues, we propose Robust Scenario Mining for Robotic Autonomy from Coarse to Fine (SMc2f), a coarse-to-fine pipeline that employs vision-language models (VLMs) for coarse image-text filtering, builds a database of successful mining cases on top of RefAV and automatically retrieves exemplars to few-shot condition the LLM for more robust retrieval, and introduces text-trajectory contrastive learning to pull matched pairs together and push mismatched pairs apart in a shared embedding space, yielding a fine-grained matcher that refines the LLM's candidate trajectories. Experiments on public datasets demonstrate substantial gains in both retrieval quality and efficiency.
Object detectors often perform well in-distribution, yet degrade sharply on a different benchmark. We study cross-dataset object detection (CD-OD) through a lens of setting specificity. We group benchmarks into setting-agnostic datasets with diverse everyday scenes and setting-specific datasets tied to a narrow environment, and evaluate a standard detector family across all train--test pairs. This reveals a clear structure in CD-OD: transfer within the same setting type is relatively stable, while transfer across setting types drops substantially and is often asymmetric. The most severe breakdowns occur when transferring from specific sources to agnostic targets, and persist after open-label alignment, indicating that domain shift dominates in the hardest regimes. To disentangle domain shift from label mismatch, we compare closed-label transfer with an open-label protocol that maps predicted classes to the nearest target label using CLIP similarity. Open-label evaluation yields consistent but bounded gains, and many corrected cases correspond to semantic near-misses supported by the image evidence. Overall, we provide a principled characterization of CD-OD under setting specificity and practical guidance for evaluating detectors under distribution shift. Code will be released at \href{[https://github.com/Ritabrata04/cdod-icpr.git}{https://github.com/Ritabrata04/cdod-icpr}.
Visual search is critical for e-commerce, especially in style-driven domains where user intent is subjective and open-ended. Existing industrial systems typically couple object detection with taxonomy-based classification and rely on catalog data for evaluation, which is prone to noise that limits robustness and scalability. We propose a taxonomy-decoupled architecture that uses classification-free region proposals and unified embeddings for similarity retrieval, enabling a more flexible and generalizable visual search. To overcome the evaluation bottleneck, we propose an LLM-as-a-Judge framework that assesses nuanced visual similarity and category relevance for query-result pairs in a zero-shot manner, removing dependence on human annotations or noise-prone catalog data. Deployed at scale on a global home goods platform, our system improves retrieval quality and yields a measurable uplift in customer engagement, while our offline evaluation metrics strongly correlate with real-world outcomes.
Agricultural weed detection on edge devices is subject to strict constraints on model capacity, computational resources, and real-time inference latency, which prevent performance improvements through model scaling or ensembling. This paper proposes Model-Driven Data Correction (MDDC), a data-centric framework that enhances detection performance by iteratively diagnosing and correcting data quality deficiencies. An automated error analysis procedure categorizes detection failures into four types: false negatives, false positives, class confusion, and localization errors. These error patterns are systematically addressed through a structured train-fix-retrain pipeline with version-controlled data management. Experimental results on multiple weed detection datasets demonstrate consistent improvements of 5-25 percent in mAP at 0.5 using a fixed lightweight detector (YOLOv8n), indicating that systematic data quality optimization can effectively alleviate performance bottlenecks under fixed model capacity constraints.
We present SpatialMem, a memory-centric system that unifies 3D geometry, semantics, and language into a single, queryable representation. Starting from casually captured egocentric RGB video, SpatialMem reconstructs metrically scaled indoor environments, detects structural 3D anchors (walls, doors, windows) as the first-layer scaffold, and populates a hierarchical memory with open-vocabulary object nodes -- linking evidence patches, visual embeddings, and two-layer textual descriptions to 3D coordinates -- for compact storage and fast retrieval. This design enables interpretable reasoning over spatial relations (e.g., distance, direction, visibility) and supports downstream tasks such as language-guided navigation and object retrieval without specialized sensors. Experiments across three real-life indoor scenes demonstrate that SpatialMem maintains strong anchor-description-level navigation completion and hierarchical retrieval accuracy under increasing clutter and occlusion, offering an efficient and extensible framework for embodied spatial intelligence.
Infrared object detection focuses on identifying and locating objects in complex environments (\eg, dark, snow, and rain) where visible imaging cameras are disabled by poor illumination. However, due to low contrast and weak edge information in infrared images, it is challenging to extract discriminative object features for robust detection. To deal with this issue, we propose a novel vision-language representation learning paradigm for infrared object detection. An additional textual supervision with rich semantic information is explored to guide the disentanglement of object and non-object features. Specifically, we propose a Semantic Feature Alignment (SFA) module to align the object features with the corresponding text features. Furthermore, we develop an Object Feature Disentanglement (OFD) module that disentangles text-aligned object features and non-object features by minimizing their correlation. Finally, the disentangled object features are entered into the detection head. In this manner, the detection performance can be remarkably enhanced via more discriminative and less noisy features. Extensive experimental results demonstrate that our approach achieves superior performance on two benchmarks: M\textsuperscript{3}FD (83.7\% mAP), FLIR (86.1\% mAP). Our code will be publicly available once the paper is accepted.