Alert button
Picture for Stephan Günnemann

Stephan Günnemann

Alert button


(Provable) Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and More

Dec 05, 2023
Jan Schuchardt, Yan Scholten, Stephan Günnemann

A machine learning model is traditionally considered robust if its prediction remains (almost) constant under input perturbations with small norm. However, real-world tasks like molecular property prediction or point cloud segmentation have inherent equivariances, such as rotation or permutation equivariance. In such tasks, even perturbations with large norm do not necessarily change an input's semantic content. Furthermore, there are perturbations for which a model's prediction explicitly needs to change. For the first time, we propose a sound notion of adversarial robustness that accounts for task equivariance. We then demonstrate that provable robustness can be achieved by (1) choosing a model that matches the task's equivariances (2) certifying traditional adversarial robustness. Certification methods are, however, unavailable for many models, such as those with continuous equivariances. We close this gap by developing the framework of equivariance-preserving randomized smoothing, which enables architecture-agnostic certification. We additionally derive the first architecture-specific graph edit distance certificates, i.e. sound robustness guarantees for isomorphism equivariant tasks like node classification. Overall, a sound notion of robustness is an important prerequisite for future work at the intersection of robust and geometric machine learning.

* Accepted at NeurIPS 2023 
Viaarxiv icon

On the Adversarial Robustness of Graph Contrastive Learning Methods

Nov 30, 2023
Filippo Guerranti, Zinuo Yi, Anna Starovoit, Rafiq Kamel, Simon Geisler, Stephan Günnemann

Contrastive learning (CL) has emerged as a powerful framework for learning representations of images and text in a self-supervised manner while enhancing model robustness against adversarial attacks. More recently, researchers have extended the principles of contrastive learning to graph-structured data, giving birth to the field of graph contrastive learning (GCL). However, whether GCL methods can deliver the same advantages in adversarial robustness as their counterparts in the image and text domains remains an open question. In this paper, we introduce a comprehensive robustness evaluation protocol tailored to assess the robustness of GCL models. We subject these models to adaptive adversarial attacks targeting the graph structure, specifically in the evasion scenario. We evaluate node and graph classification tasks using diverse real-world datasets and attack strategies. With our work, we aim to offer insights into the robustness of GCL methods and hope to open avenues for potential future research directions.

* Accepted at NeurIPS 2023 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2023) 
Viaarxiv icon

Add and Thin: Diffusion for Temporal Point Processes

Nov 02, 2023
David Lüdke, Marin Biloš, Oleksandr Shchur, Marten Lienen, Stephan Günnemann

Autoregressive neural networks within the temporal point process (TPP) framework have become the standard for modeling continuous-time event data. Even though these models can expressively capture event sequences in a one-step-ahead fashion, they are inherently limited for long-term forecasting applications due to the accumulation of errors caused by their sequential nature. To overcome these limitations, we derive ADD-THIN, a principled probabilistic denoising diffusion model for TPPs that operates on entire event sequences. Unlike existing diffusion approaches, ADD-THIN naturally handles data with discrete and continuous components. In experiments on synthetic and real-world datasets, our model matches the state-of-the-art TPP models in density estimation and strongly outperforms them in forecasting.

Viaarxiv icon

Adversarial Attacks and Defenses in Large Language Models: Old and New Threats

Oct 30, 2023
Leo Schwinn, David Dobre, Stephan Günnemann, Gauthier Gidel

Over the past decade, there has been extensive research aimed at enhancing the robustness of neural networks, yet this problem remains vastly unsolved. Here, one major impediment has been the overestimation of the robustness of new defense approaches due to faulty defense evaluations. Flawed robustness evaluations necessitate rectifications in subsequent works, dangerously slowing down the research and providing a false sense of security. In this context, we will face substantial challenges associated with an impending adversarial arms race in natural language processing, specifically with closed-source Large Language Models (LLMs), such as ChatGPT, Google Bard, or Anthropic's Claude. We provide a first set of prerequisites to improve the robustness assessment of new approaches and reduce the amount of faulty evaluations. Additionally, we identify embedding space attacks on LLMs as another viable threat model for the purposes of generating malicious content in open-sourced models. Finally, we demonstrate on a recently proposed defense that, without LLM-specific best practices in place, it is easy to overestimate the robustness of a new approach.

Viaarxiv icon

Hierarchical Randomized Smoothing

Oct 24, 2023
Yan Scholten, Jan Schuchardt, Aleksandar Bojchevski, Stephan Günnemann

Real-world data is complex and often consists of objects that can be decomposed into multiple entities (e.g. images into pixels, graphs into interconnected nodes). Randomized smoothing is a powerful framework for making models provably robust against small changes to their inputs - by guaranteeing robustness of the majority vote when randomly adding noise before classification. Yet, certifying robustness on such complex data via randomized smoothing is challenging when adversaries do not arbitrarily perturb entire objects (e.g. images) but only a subset of their entities (e.g. pixels). As a solution, we introduce hierarchical randomized smoothing: We partially smooth objects by adding random noise only on a randomly selected subset of their entities. By adding noise in a more targeted manner than existing methods we obtain stronger robustness guarantees while maintaining high accuracy. We initialize hierarchical smoothing using different noising distributions, yielding novel robustness certificates for discrete and continuous domains. We experimentally demonstrate the importance of hierarchical smoothing in image and node classification, where it yields superior robustness-accuracy trade-offs. Overall, hierarchical smoothing is an important contribution towards models that are both - certifiably robust to perturbations and accurate.

Viaarxiv icon

Assessing Robustness via Score-Based Adversarial Image Generation

Oct 06, 2023
Marcel Kollovieh, Lukas Gosch, Yan Scholten, Marten Lienen, Stephan Günnemann

Most adversarial attacks and defenses focus on perturbations within small $\ell_p$-norm constraints. However, $\ell_p$ threat models cannot capture all relevant semantic-preserving perturbations, and hence, the scope of robustness evaluations is limited. In this work, we introduce Score-Based Adversarial Generation (ScoreAG), a novel framework that leverages the advancements in score-based generative models to generate adversarial examples beyond $\ell_p$-norm constraints, so-called unrestricted adversarial examples, overcoming their limitations. Unlike traditional methods, ScoreAG maintains the core semantics of images while generating realistic adversarial examples, either by transforming existing images or synthesizing new ones entirely from scratch. We further exploit the generative capability of ScoreAG to purify images, empirically enhancing the robustness of classifiers. Our extensive empirical evaluation demonstrates that ScoreAG matches the performance of state-of-the-art attacks and defenses across multiple benchmarks. This work highlights the importance of investigating adversarial examples bounded by semantics rather than $\ell_p$-norm constraints. ScoreAG represents an important step towards more encompassing robustness assessments.

Viaarxiv icon

Stream-based Active Learning by Exploiting Temporal Properties in Perception with Temporal Predicted Loss

Sep 26, 2023
Sebastian Schmidt, Stephan Günnemann

Figure 1 for Stream-based Active Learning by Exploiting Temporal Properties in Perception with Temporal Predicted Loss
Figure 2 for Stream-based Active Learning by Exploiting Temporal Properties in Perception with Temporal Predicted Loss
Figure 3 for Stream-based Active Learning by Exploiting Temporal Properties in Perception with Temporal Predicted Loss
Figure 4 for Stream-based Active Learning by Exploiting Temporal Properties in Perception with Temporal Predicted Loss

Active learning (AL) reduces the amount of labeled data needed to train a machine learning model by intelligently choosing which instances to label. Classic pool-based AL requires all data to be present in a datacenter, which can be challenging with the increasing amounts of data needed in deep learning. However, AL on mobile devices and robots, like autonomous cars, can filter the data from perception sensor streams before reaching the datacenter. We exploited the temporal properties for such image streams in our work and proposed the novel temporal predicted loss (TPL) method. To evaluate the stream-based setting properly, we introduced the GTA V streets and the A2D2 streets dataset and made both publicly available. Our experiments showed that our approach significantly improves the diversity of the selection while being an uncertainty-based method. As pool-based approaches are more common in perception applications, we derived a concept for comparing pool-based and stream-based AL, where TPL out-performed state-of-the-art pool- or stream-based approaches for different models. TPL demonstrated a gain of 2.5 precept points (pp) less required data while being significantly faster than pool-based methods.

Viaarxiv icon

Expressivity of Graph Neural Networks Through the Lens of Adversarial Robustness

Aug 16, 2023
Francesco Campi, Lukas Gosch, Tom Wollschläger, Yan Scholten, Stephan Günnemann

We perform the first adversarial robustness study into Graph Neural Networks (GNNs) that are provably more powerful than traditional Message Passing Neural Networks (MPNNs). In particular, we use adversarial robustness as a tool to uncover a significant gap between their theoretically possible and empirically achieved expressive power. To do so, we focus on the ability of GNNs to count specific subgraph patterns, which is an established measure of expressivity, and extend the concept of adversarial robustness to this task. Based on this, we develop efficient adversarial attacks for subgraph counting and show that more powerful GNNs fail to generalize even to small perturbations to the graph's structure. Expanding on this, we show that such architectures also fail to count substructures on out-of-distribution graphs.

* Published in ${2}^{nd}$ AdvML Frontiers workshop at ${40}^{th}$ International Conference on Machine Learning 
Viaarxiv icon