Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Feature foundation models - usually vision transformers - offer rich semantic descriptors of images, useful for downstream tasks such as (interactive) segmentation and object detection. For computational efficiency these descriptors are often patch-based, and so struggle to represent the fine features often present in micrographs; they also struggle with the large image sizes present in materials and biological image analysis. In this work, we train a convolutional neural network to upsample low-resolution (i.e, large patch size) foundation model features with reference to the input image. We apply this upsampler network (without any further training) to efficiently featurise and then segment a variety of microscopy images, including plant cells, a lithium-ion battery cathode and organic crystals. The richness of these upsampled features admits separation of hard to segment phases, like hairline cracks. We demonstrate that interactive segmentation with these deep features produces high-quality segmentations far faster and with far fewer labels than training or finetuning a more traditional convolutional network.
Thermal anomaly detection in solar photovoltaic (PV) systems is essential for ensuring operational efficiency and reducing maintenance costs. In this study, we developed and named HOTSPOT-YOLO, a lightweight artificial intelligence (AI) model that integrates an efficient convolutional neural network backbone and attention mechanisms to improve object detection. This model is specifically designed for drone-based thermal inspections of PV systems, addressing the unique challenges of detecting small and subtle thermal anomalies, such as hotspots and defective modules, while maintaining real-time performance. Experimental results demonstrate a mean average precision of 90.8%, reflecting a significant improvement over baseline object detection models. With a reduced computational load and robustness under diverse environmental conditions, HOTSPOT-YOLO offers a scalable and reliable solution for large-scale PV inspections. This work highlights the integration of advanced AI techniques with practical engineering applications, revolutionizing automated fault detection in renewable energy systems.




Event-based camera has emerged as a promising paradigm for robot perception, offering advantages with high temporal resolution, high dynamic range, and robustness to motion blur. However, existing deep learning-based event processing methods often fail to fully leverage the sparse nature of event data, complicating their integration into resource-constrained edge applications. While neuromorphic computing provides an energy-efficient alternative, spiking neural networks struggle to match of performance of state-of-the-art models in complex event-based vision tasks, like object detection and optical flow. Moreover, achieving high activation sparsity in neural networks is still difficult and often demands careful manual tuning of sparsity-inducing loss terms. Here, we propose Context-aware Sparse Spatiotemporal Learning (CSSL), a novel framework that introduces context-aware thresholding to dynamically regulate neuron activations based on the input distribution, naturally reducing activation density without explicit sparsity constraints. Applied to event-based object detection and optical flow estimation, CSSL achieves comparable or superior performance to state-of-the-art methods while maintaining extremely high neuronal sparsity. Our experimental results highlight CSSL's crucial role in enabling efficient event-based vision for neuromorphic processing.
Active Membership Inference Test (aMINT) is a method designed to detect whether given data were used during the training of machine learning models. In Active MINT, we propose a novel multitask learning process that involves training simultaneously two models: the original or Audited Model, and a secondary model, referred to as the MINT Model, responsible for identifying the data used for training the Audited Model. This novel multi-task learning approach has been designed to incorporate the auditability of the model as an optimization objective during the training process of neural networks. The proposed approach incorporates intermediate activation maps as inputs to the MINT layers, which are trained to enhance the detection of training data. We present results using a wide range of neural networks, from lighter architectures such as MobileNet to more complex ones such as Vision Transformers, evaluated in 5 public benchmarks. Our proposed Active MINT achieves over 80% accuracy in detecting if given data was used for training, significantly outperforming previous approaches in the literature. Our aMINT and related methodological developments contribute to increasing transparency in AI models, facilitating stronger safeguards in AI deployments to achieve proper security, privacy, and copyright protection.
We introduce a comprehensive framework for the detection and demodulation of covert electromagnetic signals using solid-state spin sensors. Our approach, named RAPID, is a two-stage hybrid strategy that leverages nitrogen-vacancy (NV) centers to operate below the classical noise floor employing a robust adaptive policy via imitation and distillation. We first formulate the joint detection and estimation task as a unified stochastic optimal control problem, optimizing a composite Bayesian risk objective under realistic physical constraints. The RAPID algorithm solves this by first computing a robust, non-adaptive baseline protocol grounded in the quantum Fisher information matrix (QFIM), and then using this baseline to warm-start an online, adaptive policy learned via deep reinforcement learning (Soft Actor-Critic). This method dynamically optimizes control pulses, interrogation times, and measurement bases to maximize information gain while actively suppressing non-Markovian noise and decoherence. Numerical simulations demonstrate that the protocol achieves a significant sensitivity gain over static methods, maintains high estimation precision in correlated noise environments, and, when applied to sensor arrays, enables coherent quantum beamforming that achieves Heisenberg-like scaling in precision. This work establishes a theoretically rigorous and practically viable pathway for deploying quantum sensors in security-critical applications such as electronic warfare and covert surveillance.
Effectively understanding urban scenes requires fine-grained spatial reasoning about objects, layouts, and depth cues. However, how well current vision-language models (VLMs), pretrained on general scenes, transfer these abilities to urban domain remains underexplored. To address this gap, we conduct a comparative study of three off-the-shelf VLMs-BLIP-2, InstructBLIP, and LLaVA-1.5-evaluating both zero-shot performance and the effects of fine-tuning with a synthetic VQA dataset specific to urban scenes. We construct such dataset from segmentation, depth, and object detection predictions of street-view images, pairing each question with LLM-generated Chain-of-Thought (CoT) answers for step-by-step reasoning supervision. Results show that while VLMs perform reasonably well in zero-shot settings, fine-tuning with our synthetic CoT-supervised dataset substantially boosts performance, especially for challenging question types such as negation and counterfactuals. This study introduces urban spatial reasoning as a new challenge for VLMs and demonstrates synthetic dataset construction as a practical path for adapting general-purpose models to specialized domains.
Many high-performance networks were not designed with lightweight application scenarios in mind from the outset, which has greatly restricted their scope of application. This paper takes ConvNeXt as the research object and significantly reduces the parameter scale and network complexity of ConvNeXt by integrating the Cross Stage Partial Connections mechanism and a series of optimized designs. The new network is named E-ConvNeXt, which can maintain high accuracy performance under different complexity configurations. The three core innovations of E-ConvNeXt are : (1) integrating the Cross Stage Partial Network (CSPNet) with ConvNeXt and adjusting the network structure, which reduces the model's network complexity by up to 80%; (2) Optimizing the Stem and Block structures to enhance the model's feature expression capability and operational efficiency; (3) Replacing Layer Scale with channel attention. Experimental validation on ImageNet classification demonstrates E-ConvNeXt's superior accuracy-efficiency balance: E-ConvNeXt-mini reaches 78.3% Top-1 accuracy at 0.9GFLOPs. E-ConvNeXt-small reaches 81.9% Top-1 accuracy at 3.1GFLOPs. Transfer learning tests on object detection tasks further confirm its generalization capability.
We propose an approach to generate synthetic data to train computer vision (CV) models for industrial wear and tear detection. Wear and tear detection is an important CV problem for predictive maintenance tasks in any industry. However, data curation for training such models is expensive and time-consuming due to the unavailability of datasets for different wear and tear scenarios. Our approach employs a vision language model along with a 3D simulation and rendering engine to generate synthetic data for varying rust conditions. We evaluate our approach by training a CV model for rust detection using the generated dataset and tested the trained model on real images of rusted industrial objects. The model trained with the synthetic data generated by our approach, outperforms the other approaches with a mAP50 score of 0.87. The approach is customizable and can be easily extended to other industrial wear and tear detection scenarios


Pollinator insects such as honeybees and bumblebees are vital to global food production and ecosystem stability, yet their populations are declining due to increasing anthropogenic and environmental stressors. To support scalable, automated pollinator monitoring, we introduce BuzzSet, a new large-scale dataset of high-resolution pollinator images collected in real agricultural field conditions. BuzzSet contains 7856 manually verified and labeled images, with over 8000 annotated instances across three classes: honeybees, bumblebees, and unidentified insects. Initial annotations were generated using a YOLOv12 model trained on external data and refined via human verification using open-source labeling tools. All images were preprocessed into 256~$\times$~256 tiles to improve the detection of small insects. We provide strong baselines using the RF-DETR transformer-based object detector. The model achieves high F1-scores of 0.94 and 0.92 for honeybee and bumblebee classes, respectively, with confusion matrix results showing minimal misclassification between these categories. The unidentified class remains more challenging due to label ambiguity and lower sample frequency, yet still contributes useful insights for robustness evaluation. Overall detection quality is strong, with a best mAP@0.50 of 0.559. BuzzSet offers a valuable benchmark for small object detection, class separation under label noise, and ecological computer vision.
The recently introduced odd-one-out anomaly detection task involves identifying the odd-looking instances within a multi-object scene. This problem presents several challenges for modern deep learning models, demanding spatial reasoning across multiple views and relational reasoning to understand context and generalize across varying object categories and layouts. We argue that these challenges must be addressed with efficiency in mind. To this end, we propose a DINO-based model that reduces the number of parameters by one third and shortens training time by a factor of three compared to the current state-of-the-art, while maintaining competitive performance. Our experimental evaluation also introduces a Multimodal Large Language Model baseline, providing insights into its current limitations in structured visual reasoning tasks. The project page can be found at https://silviochito.github.io/EfficientOddOneOut/