Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Driver distraction remains a leading contributor to motor vehicle crashes, necessitating rigorous evaluation of new in-vehicle technologies. This study assessed the visual and cognitive demands associated with an advanced Large Language Model (LLM) conversational agent (Gemini Live) during on-road driving, comparing it against handsfree phone calls, visual turn-by-turn guidance (low load baseline), and the Operation Span (OSPAN) task (high load anchor). Thirty-two licensed drivers completed five secondary tasks while visual and cognitive demands were measured using the Detection Response Task (DRT) for cognitive load, eye-tracking for visual attention, and subjective workload ratings. Results indicated that Gemini Live interactions (both single-turn and multi-turn) and hands-free phone calls shared similar levels of cognitive load, between that of visual turn-by-turn guidance and OSPAN. Exploratory analysis showed that cognitive load remained stable across extended multi-turn conversations. All tasks maintained mean glance durations well below the well-established 2-second safety threshold, confirming low visual demand. Furthermore, drivers consistently dedicated longer glances to the roadway between brief off-road glances toward the device during task completion, particularly during voice-based interactions, rendering longer total-eyes-off-road time findings less consequential. Subjective ratings mirrored objective data, with participants reporting low effort, demands, and perceived distraction for Gemini Live. These findings demonstrate that advanced LLM conversational agents, when implemented via voice interfaces, impose cognitive and visual demands comparable to established, low-risk hands-free benchmarks, supporting their safe deployment in the driving environment.
The increasing prevalence of malicious Portable Document Format (PDF) files necessitates robust and comprehensive feature extraction techniques for effective detection and analysis. This work presents a unified framework that integrates graph-based, structural, and metadata-driven analysis to generate a rich feature representation for each PDF document. The system extracts text from PDF pages and constructs undirected graphs based on pairwise word relationships, enabling the computation of graph-theoretic features such as node count, edge density, and clustering coefficient. Simultaneously, the framework parses embedded metadata to quantify character distributions, entropy patterns, and inconsistencies across fields such as author, title, and producer. Temporal features are derived from creation and modification timestamps to capture behavioral signatures, while structural elements including, object streams, fonts, and embedded images, are quantified to reflect document complexity. Boolean flags for potentially malicious PDF constructs (e.g., JavaScript, launch actions) are also extracted. Together, these features form a high-dimensional vector representation (170 dimensions) that is well-suited for downstream tasks such as malware classification, anomaly detection, and forensic analysis. The proposed approach is scalable, extensible, and designed to support real-world PDF threat intelligence workflows.6
In speech machine learning, neural network models are typically designed by choosing an architecture with fixed layer sizes and structure. These models are then trained to maximize performance on metrics aligned with the task's objective. While the overall architecture is usually guided by prior knowledge of the task, the sizes of individual layers are often chosen heuristically. However, this approach does not guarantee an optimal trade-off between performance and computational complexity; consequently, post hoc methods such as weight quantization or model pruning are typically employed to reduce computational cost. This occurs because stochastic gradient descent (SGD) methods can only optimize differentiable functions, while factors influencing computational complexity, such as layer sizes and floating-point operations per second (FLOP/s), are non-differentiable and require modifying the model structure during training. We propose a reparameterization technique based on feature noise injection that enables joint optimization of performance and computational complexity during training using SGD-based methods. Unlike traditional pruning methods, our approach allows the model size to be dynamically optimized for a target performance-complexity trade-off, without relying on heuristic criteria to select which weights or structures to remove. We demonstrate the effectiveness of our method through three case studies, including a synthetic example and two practical real-world applications: voice activity detection and audio anti-spoofing. The code related to our work is publicly available to encourage further research.
The task of 6DoF object pose estimation is one of the fundamental problems of 3D vision with many practical applications such as industrial automation. Traditional deep learning approaches for this task often require extensive training data or CAD models, limiting their application in real-world industrial settings where data is scarce and object instances vary. We propose a novel method for 6DoF pose estimation focused specifically on bins used in industrial settings. We exploit the cuboid geometry of bins by first detecting intermediate 3D line segments corresponding to their top edges. Our approach extends the 2D line segment detection network LeTR to operate on structured point cloud data. The detected 3D line segments are then processed using a simple geometric procedure to robustly determine the bin's 6DoF pose. To evaluate our method, we extend an existing dataset with a newly collected and annotated dataset, which we make publicly available. We show that incorporating synthetic training data significantly improves pose estimation accuracy on real scans. Moreover, we show that our method significantly outperforms current state-of-the-art 6DoF pose estimation methods in terms of the pose accuracy (3 cm translation error, 8.2$^\circ$ rotation error) while not requiring instance-specific CAD models during inference.
Cognitive anthropology suggests that the distinction of human intelligence lies in the ability to infer other individuals' knowledge states and understand their intentions. In comparison, our closest animal relative, chimpanzees, lack the capacity to do so. With this paper, we aim to evaluate LLM performance in the area of knowledge state tracking and estimation. We design two tasks to test (1) if LLMs can detect when story characters, through their actions, demonstrate knowledge they should not possess, and (2) if LLMs can predict story characters' next actions based on their own knowledge vs. objective truths they do not know. Results reveal that most current state-of-the-art LLMs achieve near-random performance on both tasks, and are substantially inferior to humans. We argue future LLM research should place more weight on the abilities of knowledge estimation and intention understanding.
Vision-Language Models (VLMs) demonstrate impressive capabilities across multimodal tasks, yet exhibit systematic spatial reasoning failures, achieving only 49% (CLIP) to 54% (BLIP-2) accuracy on basic directional relationships. For safe deployment in robotics and autonomous systems, we need to predict when to trust VLM spatial predictions rather than accepting all outputs. We propose a vision-based confidence estimation framework that validates VLM predictions through independent geometric verification using object detection. Unlike text-based approaches relying on self-assessment, our method fuses four signals via gradient boosting: geometric alignment between VLM claims and coordinates, spatial ambiguity from overlap, detection quality, and VLM internal uncertainty. We achieve 0.674 AUROC on BLIP-2 (34.0% improvement over text-based baselines) and 0.583 AUROC on CLIP (16.1% improvement), generalizing across generative and classification architectures. Our framework enables selective prediction: at 60% target accuracy, we achieve 61.9% coverage versus 27.6% baseline (2.2x improvement) on BLIP-2. Feature analysis reveals vision-based signals contribute 87.4% of model importance versus 12.7% from VLM confidence, validating that external geometric verification outperforms self-assessment. We demonstrate reliable scene graph construction where confidence-based pruning improves precision from 52.1% to 78.3% while retaining 68.2% of edges.
In this paper, we present an automated pipeline for generating domain-specific synthetic datasets with diffusion models, addressing the distribution shift between pre-trained models and real-world deployment environments. Our three-stage framework first synthesizes target objects within domain-specific backgrounds through controlled inpainting. The generated outputs are then validated via a multi-modal assessment that integrates object detection, aesthetic scoring, and vision-language alignment. Finally, a user-preference classifier is employed to capture subjective selection criteria. This pipeline enables the efficient construction of high-quality, deployable datasets while reducing reliance on extensive real-world data collection.
Diagnosing dental diseases from radiographs is time-consuming and challenging due to the subtle nature of diagnostic evidence. Existing methods, which rely on object detection models designed for natural images with more distinct target patterns, struggle to detect dental diseases that present with far less visual support. To address this challenge, we propose {\bf DentalX}, a novel context-aware dental disease detection approach that leverages oral structure information to mitigate the visual ambiguity inherent in radiographs. Specifically, we introduce a structural context extraction module that learns an auxiliary task: semantic segmentation of dental anatomy. The module extracts meaningful structural context and integrates it into the primary disease detection task to enhance the detection of subtle dental diseases. Extensive experiments on a dedicated benchmark demonstrate that DentalX significantly outperforms prior methods in both tasks. This mutual benefit arises naturally during model optimization, as the correlation between the two tasks is effectively captured. Our code is available at https://github.com/zhiqin1998/DentYOLOX.
Time series data play a critical role in various fields, including finance, healthcare, marketing, and engineering. A wide range of techniques (from classical statistical models to neural network-based approaches such as Long Short-Term Memory (LSTM)) have been employed to address time series forecasting challenges. In this paper, we reframe time series forecasting as a two-part task: (1) predicting the trend (directional movement) of the time series at the next time step, and (2) forecasting the quantitative value at the next time step. The trend can be predicted using a binary classifier, while quantitative values can be forecasted using models such as LSTM and Bidirectional Long Short-Term Memory (Bi-LSTM). Building on this reframing, we propose the Trend-Adjusted Time Series (TATS) model, which adjusts the forecasted values based on the predicted trend provided by the binary classifier. We validate the proposed approach through both theoretical analysis and empirical evaluation. The TATS model is applied to a volatile financial time series (the daily gold price) with the objective of forecasting the next days price. Experimental results demonstrate that TATS consistently outperforms standard LSTM and Bi-LSTM models by achieving significantly lower forecasting error. In addition, our results indicate that commonly used metrics such as MSE and MAE are insufficient for fully assessing time series model performance. Therefore, we also incorporate trend detection accuracy, which measures how effectively a model captures trends in a time series.
Referring Expression Comprehension (REC) aims to localize the image region corresponding to a natural-language query. Recent neuro-symbolic REC approaches leverage large language models (LLMs) and vision-language models (VLMs) to perform compositional reasoning, decomposing queries 4 structured programs and executing them step-by-step. While such approaches achieve interpretable reasoning and strong zero-shot generalization, they assume that intermediate reasoning steps are accurate. However, this assumption causes cascading errors: false detections and invalid relations propagate through the reasoning chain, yielding high-confidence false positives even when no target is present in the image. To address this limitation, we introduce Verification-Integrated Reasoning Operators (VIRO), a neuro-symbolic framework that embeds lightweight operator-level verifiers within reasoning steps. Each operator executes and validates its output, such as object existence or spatial relationship, thereby allowing the system to robustly handle no-target cases when verification conditions are not met. Our framework achieves state-of-the-art performance, reaching 61.1% balanced accuracy across target-present and no-target settings, and demonstrates generalization to real-world egocentric data. Furthermore, VIRO shows superior computational efficiency in terms of throughput, high reliability with a program failure rate of less than 0.3%, and scalability through decoupled program generation from execution.