Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Object detection in aerial imagery is a critical task in applications such as UAV reconnaissance. Although existing methods have extensively explored feature interaction between different modalities, they commonly rely on simple fusion strategies for feature aggregation. This introduces two critical flaws: it is prone to cross-modal noise and disrupts the hierarchical structure of the feature pyramid, thereby impairing the fine-grained detection of small objects. To address this challenge, we propose the Pyramidal Adaptive Cross-Gating Network (PACGNet), an architecture designed to perform deep fusion within the backbone. To this end, we design two core components: the Symmetrical Cross-Gating (SCG) module and the Pyramidal Feature-aware Multimodal Gating (PFMG) module. The SCG module employs a bidirectional, symmetrical "horizontal" gating mechanism to selectively absorb complementary information, suppress noise, and preserve the semantic integrity of each modality. The PFMG module reconstructs the feature hierarchy via a progressive hierarchical gating mechanism. This leverages the detailed features from a preceding, higher-resolution level to guide the fusion at the current, lower-resolution level, effectively preserving fine-grained details as features propagate. Through evaluations conducted on the DroneVehicle and VEDAI datasets, our PACGNet sets a new state-of-the-art benchmark, with mAP50 scores reaching 81.7% and 82.1% respectively.
The rapid deployment of mega-constellations is driving the long-term vision of space data centers (SDCs), where interconnected satellites form in-orbit distributed computing and learning infrastructures. Enabling distributed federated learning in such systems is challenging because iterative training requires frequent aggregation over inter-satellite links that are bandwidth- and energy-constrained, and the link conditions can be highly dynamic. In this work, we exploit over-the-air computation (AirComp) as an in-network aggregation primitive. However, conventional coherent AirComp relies on stringent phase alignment, which is difficult to maintain in space environments due to satellite jitter and Doppler effects. To overcome this limitation, we propose OptiVote, a robust and communication-efficient non-coherent free-space optical (FSO) AirComp framework for federated learning toward Space Data Centers. OptiVote integrates sign stochastic gradient descent (signSGD) with a majority-vote (MV) aggregation principle and pulse-position modulation (PPM), where each satellite conveys local gradient signs by activating orthogonal PPM time slots. The aggregation node performs MV detection via non-coherent energy accumulation, transforming phase-sensitive field superposition into phase-agnostic optical intensity combining, thereby eliminating the need for precise phase synchronization and improving resilience under dynamic impairments. To mitigate aggregation bias induced by heterogeneous FSO channels, we further develop an importance-aware, channel state information (CSI)-free dynamic power control scheme that balances received energies without additional signaling. We provide theoretical analysis by characterizing the aggregate error probability under statistical FSO channels and establishing convergence guarantees for non-convex objectives.
Deep learning-based object detection models play a critical role in real-world applications such as autonomous driving and security surveillance systems, yet they remain vulnerable to adversarial examples. In this work, we propose an autoencoder-based denoising defense to recover object detection performance degraded by adversarial perturbations. We conduct adversarial attacks using Perlin noise on vehicle-related images from the COCO dataset, apply a single-layer convolutional autoencoder to remove the perturbations, and evaluate detection performance using YOLOv5. Our experiments demonstrate that adversarial attacks reduce bbox mAP from 0.2890 to 0.1640, representing a 43.3% performance degradation. After applying the proposed autoencoder defense, bbox mAP improves to 0.1700 (3.7% recovery) and bbox mAP@50 increases from 0.2780 to 0.3080 (10.8% improvement). These results indicate that autoencoder-based denoising can provide partial defense against adversarial attacks without requiring model retraining.
This work leverages the continuous sweeping motion of LiDAR scanning to concentrate object detection efforts on specific regions that receive a change in point data from one frame to another. We achieve this by using a sliding time window with short strides and consider the temporal dimension by storing convolution results between passes. This allows us to ignore unchanged regions, significantly reducing the number of convolution operations per forward pass without sacrificing accuracy. This data reuse scheme introduces extreme sparsity to detection data. To exploit this sparsity, we extend our previous work on scatter-based convolutions to allow for data reuse, and as such propose Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling (SSCATeR). This operation treats incoming LiDAR data as a continuous stream and acts only on the changing parts of the point cloud. By doing so, we achieve the same results with as much as a 6.61-fold reduction in processing time. Our test results show that the feature maps output by our method are identical to those produced by traditional sparse convolution techniques, whilst greatly increasing the computational efficiency of the network.
The rapid evolution of generative models has led to a continuous emergence of multimodal safety risks, exposing the limitations of existing defense methods. To address these challenges, we propose ProGuard, a vision-language proactive guard that identifies and describes out-of-distribution (OOD) safety risks without the need for model adjustments required by traditional reactive approaches. We first construct a modality-balanced dataset of 87K samples, each annotated with both binary safety labels and risk categories under a hierarchical multimodal safety taxonomy, effectively mitigating modality bias and ensuring consistent moderation across text, image, and text-image inputs. Based on this dataset, we train our vision-language base model purely through reinforcement learning (RL) to achieve efficient and concise reasoning. To approximate proactive safety scenarios in a controlled setting, we further introduce an OOD safety category inference task and augment the RL objective with a synonym-bank-based similarity reward that encourages the model to generate concise descriptions for unseen unsafe categories. Experimental results show that ProGuard achieves performance comparable to closed-source large models on binary safety classification, substantially outperforms existing open-source guard models on unsafe content categorization. Most notably, ProGuard delivers a strong proactive moderation ability, improving OOD risk detection by 52.6% and OOD risk description by 64.8%.




Multi-view 3D object detection is a fundamental task in autonomous driving perception, where achieving a balance between detection accuracy and computational efficiency remains crucial. Sparse query-based 3D detectors efficiently aggregate object-relevant features from multi-view images through a set of learnable queries, offering a concise and end-to-end detection paradigm. Building on this foundation, MV2D leverages 2D detection results to provide high-quality object priors for query initialization, enabling higher precision and recall. However, the inherent depth ambiguity in single-frame 2D detections still limits the accuracy of 3D query generation. To address this issue, we propose StereoMV2D, a unified framework that integrates temporal stereo modeling into the 2D detection-guided multi-view 3D detector. By exploiting cross-temporal disparities of the same object across adjacent frames, StereoMV2D enhances depth perception and refines the query priors, while performing all computations efficiently within 2D regions of interest (RoIs). Furthermore, a dynamic confidence gating mechanism adaptively evaluates the reliability of temporal stereo cues through learning statistical patterns derived from the inter-frame matching matrix together with appearance consistency, ensuring robust detection under object appearance and occlusion. Extensive experiments on the nuScenes and Argoverse 2 datasets demonstrate that StereoMV2D achieves superior detection performance without incurring significant computational overhead. Code will be available at https://github.com/Uddd821/StereoMV2D.
Real-time and collision-free motion planning remains challenging for robotic manipulation in unknown environments due to continuous perception updates and the need for frequent online replanning. To address these challenges, we propose a parallel mapping and motion planning framework that tightly integrates Euclidean Distance Transform (EDT)-based environment representation with a sampling-based model predictive control (SMPC) planner. On the mapping side, a dense distance-field-based representation is constructed using a GPU-based EDT and augmented with a robot-masked update mechanism to prevent false self-collision detections during online perception. On the planning side, motion generation is formulated as a stochastic optimization problem with a unified objective function and efficiently solved by evaluating large batches of candidate rollouts in parallel within a SMPC framework, in which a geometrically consistent pose tracking metric defined on SE(3) is incorporated to ensure fast and accurate convergence to the target pose. The entire mapping and planning pipeline is implemented on the GPU to support high-frequency replanning. The effectiveness of the proposed framework is validated through extensive simulations and real-world experiments on a 7-DoF robotic manipulator. More details are available at: https://zxw610.github.io/ParaMaP.
Handwritten text recognition and optical character recognition solutions show excellent results with processing data of modern era, but efficiency drops with Latin documents of medieval times. This paper presents a deep learning method to extract text information from handwritten Latin-language documents of the 9th to 11th centuries. The approach takes into account the properties inherent in medieval documents. The paper provides a brief introduction to the field of historical document transcription, a first-sight analysis of the raw data, and the related works and studies. The paper presents the steps of dataset development for further training of the models. The explanatory data analysis of the processed data is provided as well. The paper explains the pipeline of deep learning models to extract text information from the document images, from detecting objects to word recognition using classification models and embedding word images. The paper reports the following results: recall, precision, F1 score, intersection over union, confusion matrix, and mean string distance. The plots of the metrics are also included. The implementation is published on the GitHub repository.
Lifelong embodied navigation requires agents to accumulate, retain, and exploit spatial-semantic experience across tasks, enabling efficient exploration in novel environments and rapid goal reaching in familiar ones. While object-centric memory is interpretable, it depends on detection and reconstruction pipelines that limit robustness and scalability. We propose an image-centric memory framework that achieves long-term implicit memory via an efficient visual context compression module end-to-end coupled with a Qwen2.5-VL-based navigation policy. Built atop a ViT backbone with frozen DINOv3 features and lightweight PixelUnshuffle+Conv blocks, our visual tokenizer supports configurable compression rates; for example, under a representative 16$\times$ compression setting, each image is encoded with about 30 tokens, expanding the effective context capacity from tens to hundreds of images. Experimental results on GOAT-Bench and HM3D-OVON show that our method achieves state-of-the-art navigation performance, improving exploration in unfamiliar environments and shortening paths in familiar ones. Ablation studies further reveal that moderate compression provides the best balance between efficiency and accuracy. These findings position compressed image-centric memory as a practical and scalable interface for lifelong embodied agents, enabling them to reason over long visual histories and navigate with human-like efficiency.
Pneumonia is a leading cause of mortality in children under five, with over 700,000 deaths annually. Accurate diagnosis from chest X-rays is limited by radiologist availability and variability. Objective: This study compares custom CNNs trained from scratch with transfer learning (ResNet50, DenseNet121, EfficientNet-B0) for pediatric pneumonia detection, evaluating frozen-backbone and fine-tuning regimes. Methods: A dataset of 5,216 pediatric chest X-rays was split 80/10/10 for training, validation, and testing. Seven models were trained and assessed using accuracy, F1-score, and AUC. Grad-CAM visualizations provided explainability. Results: Fine-tuned ResNet50 achieved the best performance: 99.43\% accuracy, 99.61\% F1-score, and 99.93\% AUC, with only 3 misclassifications. Fine-tuning outperformed frozen-backbone models by 5.5 percentage points on average. Grad-CAM confirmed clinically relevant lung regions guided predictions. Conclusions: Transfer learning with fine-tuning substantially outperforms CNNs trained from scratch for pediatric pneumonia detection, showing near-perfect accuracy. This system has strong potential as a screening tool in resource-limited settings. Future work should validate these findings on multi-center and adult datasets. Keywords: Pneumonia detection, deep learning, transfer learning, CNN, chest X-ray, pediatric diagnosis, ResNet, DenseNet, EfficientNet, Grad-CAM.