Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Existing Real-Time Object Detection (RTOD) methods commonly adopt YOLO-like architectures for their favorable trade-off between accuracy and speed. However, these models rely on static dense computation that applies uniform processing to all inputs, misallocating representational capacity and computational resources such as over-allocating on trivial scenes while under-serving complex ones. This mismatch results in both computational redundancy and suboptimal detection performance. To overcome this limitation, we propose YOLO-Master, a novel YOLO-like framework that introduces instance-conditional adaptive computation for RTOD. This is achieved through a Efficient Sparse Mixture-of-Experts (ES-MoE) block that dynamically allocates computational resources to each input according to its scene complexity. At its core, a lightweight dynamic routing network guides expert specialization during training through a diversity enhancing objective, encouraging complementary expertise among experts. Additionally, the routing network adaptively learns to activate only the most relevant experts, thereby improving detection performance while minimizing computational overhead during inference. Comprehensive experiments on five large-scale benchmarks demonstrate the superiority of YOLO-Master. On MS COCO, our model achieves 42.4% AP with 1.62ms latency, outperforming YOLOv13-N by +0.8% mAP and 17.8% faster inference. Notably, the gains are most pronounced on challenging dense scenes, while the model preserves efficiency on typical inputs and maintains real-time inference speed. Code will be available.
4D millimeter-wave (mmWave) radar has been widely adopted in autonomous driving and robot perception due to its low cost and all-weather robustness. However, its inherent sparsity and limited semantic richness significantly constrain perception capability. Recently, fusing camera data with 4D radar has emerged as a promising cost effective solution, by exploiting the complementary strengths of the two modalities. Nevertheless, point-cloud-based radar often suffer from information loss introduced by multi-stage signal processing, while directly utilizing raw 4D radar data incurs prohibitive computational costs. To address these challenges, we propose WRCFormer, a novel 3D object detection framework that fuses raw radar cubes with camera inputs via multi-view representations of the decoupled radar cube. Specifically, we design a Wavelet Attention Module as the basic module of wavelet-based Feature Pyramid Network (FPN) to enhance the representation of sparse radar signals and image data. We further introduce a two-stage query-based, modality-agnostic fusion mechanism termed Geometry-guided Progressive Fusion to efficiently integrate multi-view features from both modalities. Extensive experiments demonstrate that WRCFormer achieves state-of-the-art performance on the K-Radar benchmarks, surpassing the best model by approximately 2.4% in all scenarios and 1.6% in the sleet scenario, highlighting its robustness under adverse weather conditions.
The rapid advancement of autonomous systems, including self-driving vehicles and drones, has intensified the need to forge true Spatial Intelligence from multi-modal onboard sensor data. While foundation models excel in single-modal contexts, integrating their capabilities across diverse sensors like cameras and LiDAR to create a unified understanding remains a formidable challenge. This paper presents a comprehensive framework for multi-modal pre-training, identifying the core set of techniques driving progress toward this goal. We dissect the interplay between foundational sensor characteristics and learning strategies, evaluating the role of platform-specific datasets in enabling these advancements. Our central contribution is the formulation of a unified taxonomy for pre-training paradigms: ranging from single-modality baselines to sophisticated unified frameworks that learn holistic representations for advanced tasks like 3D object detection and semantic occupancy prediction. Furthermore, we investigate the integration of textual inputs and occupancy representations to facilitate open-world perception and planning. Finally, we identify critical bottlenecks, such as computational efficiency and model scalability, and propose a roadmap toward general-purpose multi-modal foundation models capable of achieving robust Spatial Intelligence for real-world deployment.
Infrared small object detection urgently requires semi-supervised paradigms due to the high cost of annotation. However, existing methods like SAM face significant challenges of domain gaps, inability of encoding physical priors, and inherent architectural complexity. To address this, we designed a Hierarchical MoE Adapter consisting of four white-box neural operators. Building upon this core component, we propose a two-stage paradigm for knowledge distillation and transfer: (1) Prior-Guided Knowledge Distillation, where we use our MoE adapter and 10% of available fully supervised data to distill SAM into an expert teacher (Scalpel-SAM); and (2) Deployment-Oriented Knowledge Transfer, where we use Scalpel-SAM to generate pseudo labels for training lightweight and efficient downstream models. Experiments demonstrate that with minimal annotations, our paradigm enables downstream models to achieve performance comparable to, or even surpassing, their fully supervised counterparts. To our knowledge, this is the first semi-supervised paradigm that systematically addresses the data scarcity issue in IR-SOT using SAM as the teacher model.
The development of effective training and evaluation strategies is critical. Conventional methods for assessing surgical proficiency typically rely on expert supervision, either through onsite observation or retrospective analysis of recorded procedures. However, these approaches are inherently subjective, susceptible to inter-rater variability, and require substantial time and effort from expert surgeons. These demands are often impractical in low- and middle-income countries, thereby limiting the scalability and consistency of such methods across training programs. To address these limitations, we propose a novel AI-driven framework for the automated assessment of microanastomosis performance. The system integrates a video transformer architecture based on TimeSformer, improved with hierarchical temporal attention and weighted spatial attention mechanisms, to achieve accurate action recognition within surgical videos. Fine-grained motion features are then extracted using a YOLO-based object detection and tracking method, allowing for detailed analysis of instrument kinematics. Performance is evaluated along five aspects of microanastomosis skill, including overall action execution, motion quality during procedure-critical actions, and general instrument handling. Experimental validation using a dataset of 58 expert-annotated videos demonstrates the effectiveness of the system, achieving 87.7% frame-level accuracy in action segmentation that increased to 93.62% with post-processing, and an average classification accuracy of 76% in replicating expert assessments across all skill aspects. These findings highlight the system's potential to provide objective, consistent, and interpretable feedback, thereby enabling more standardized, data-driven training and evaluation in surgical education.
Optical and Synthetic Aperture Radar (SAR) fusion-based object detection has attracted significant research interest in remote sensing, as these modalities provide complementary information for all-weather monitoring. However, practical deployment is severely limited by inherent challenges. Due to distinct imaging mechanisms, temporal asynchrony, and registration difficulties, obtaining well-aligned optical-SAR image pairs remains extremely difficult, frequently resulting in missing or degraded modality data. Although recent approaches have attempted to address this issue, they still suffer from limited robustness to random missing modalities and lack effective mechanisms to ensure consistent performance improvement in fusion-based detection. To address these limitations, we propose a novel Quality-Aware Dynamic Fusion Network (QDFNet) for robust optical-SAR object detection. Our proposed method leverages learnable reference tokens to dynamically assess feature reliability and guide adaptive fusion in the presence of missing modalities. In particular, we design a Dynamic Modality Quality Assessment (DMQA) module that employs learnable reference tokens to iteratively refine feature reliability assessment, enabling precise identification of degraded regions and providing quality guidance for subsequent fusion. Moreover, we develop an Orthogonal Constraint Normalization Fusion (OCNF) module that employs orthogonal constraints to preserve modality independence while dynamically adjusting fusion weights based on reliability scores, effectively suppressing unreliable feature propagation. Extensive experiments on the SpaceNet6-OTD and OGSOD-2.0 datasets demonstrate the superiority and effectiveness of QDFNet compared to state-of-the-art methods, particularly under partial modality corruption or missing data scenarios.
Background: Deep learning superresolution (SR) may enhance musculoskeletal MR image quality, but its diagnostic value in knee imaging at 7T is unclear. Objectives: To compare image quality and diagnostic performance of SR, low-resolution (LR), and high-resolution (HR) 7T knee MRI. Methods: In this prospective study, 42 participants underwent 7T knee MRI with LR (0.8*0.8*2 mm3) and HR (0.4*0.4*2 mm3) sequences. SR images were generated from LR data using a Hybrid Attention Transformer model. Three radiologists assessed image quality, anatomic conspicuity, and detection of knee pathologies. Arthroscopy served as reference in 10 cases. Results: SR images showed higher overall quality than LR (median score 5 vs 4, P<.001) and lower noise than HR (5 vs 4, P<.001). Visibility of cartilage, menisci, and ligaments was superior in SR and HR compared to LR (P<.001). Detection rates and diagnostic performance (sensitivity, specificity, AUC) for intra-articular pathology were similar across image types (P>=.095). Conclusions: Deep learning superresolution improved subjective image quality in 7T knee MRI but did not increase diagnostic accuracy compared with standard LR imaging.
Electrical substations are a significant component of an electrical grid. Indeed, the assets at these substations (e.g., transformers) are prone to disruption from many hazards, including hurricanes, flooding, earthquakes, and geomagnetically induced currents (GICs). As electrical grids are considered critical national infrastructure, any failure can have significant economic and public safety implications. To help prevent and mitigate these failures, it is thus essential that we identify key substation components to quantify vulnerability. Unfortunately, traditional manual mapping of substation infrastructure is time-consuming and labor-intensive. Therefore, an autonomous solution utilizing computer vision models is preferable, as it allows for greater convenience and efficiency. In this research paper, we train and compare the outputs of 3 models (YOLOv8, YOLOv11, RF-DETR) on a manually labeled dataset of US substation images. Each model is evaluated for detection accuracy, precision, and efficiency. We present the key strengths and limitations of each model, identifying which provides reliable and large-scale substation component mapping. Additionally, we utilize these models to effectively map the various substation components in the United States, showcasing a use case for machine learning in substation mapping.
High-resolution remote sensing imagery increasingly contains dense clusters of tiny objects, the detection of which is extremely challenging due to severe mutual occlusion and limited pixel footprints. Existing detection methods typically allocate computational resources uniformly, failing to adaptively focus on these density-concentrated regions, which hinders feature learning effectiveness. To address these limitations, we propose the Dense Region Mining Network (DRMNet), which leverages density maps as explicit spatial priors to guide adaptive feature learning. First, we design a Density Generation Branch (DGB) to model object distribution patterns, providing quantifiable priors that guide the network toward dense regions. Second, to address the computational bottleneck of global attention, our Dense Area Focusing Module (DAFM) uses these density maps to identify and focus on dense areas, enabling efficient local-global feature interaction. Finally, to mitigate feature degradation during hierarchical extraction, we introduce a Dual Filter Fusion Module (DFFM). It disentangles multi-scale features into high- and low-frequency components using a discrete cosine transform and then performs density-guided cross-attention to enhance complementarity while suppressing background interference. Extensive experiments on the AI-TOD and DTOD datasets demonstrate that DRMNet surpasses state-of-the-art methods, particularly in complex scenarios with high object density and severe occlusion.
Video recognition models remain vulnerable to adversarial attacks, while existing diffusion-based purification methods suffer from inefficient sampling and curved trajectories. Directly regressing clean videos from adversarial inputs often fails to recover faithful content due to the subtle nature of perturbations; this necessitates physically shattering the adversarial structure. Therefore, we propose Flow Matching for Adversarial Video Purification FMVP. FMVP physically shatters global adversarial structures via a masking strategy and reconstructs clean video dynamics using Conditional Flow Matching (CFM) with an inpainting objective. To further decouple semantic content from adversarial noise, we design a Frequency-Gated Loss (FGL) that explicitly suppresses high-frequency adversarial residuals while preserving low-frequency fidelity. We design Attack-Aware and Generalist training paradigms to handle known and unknown threats, respectively. Extensive experiments on UCF-101 and HMDB-51 demonstrate that FMVP outperforms state-of-the-art methods (DiffPure, Defense Patterns (DP), Temporal Shuffling (TS) and FlowPure), achieving robust accuracy exceeding 87% against PGD and 89% against CW attacks. Furthermore, FMVP demonstrates superior robustness against adaptive attacks (DiffHammer) and functions as a zero-shot adversarial detector, attaining detection accuracies of 98% for PGD and 79% for highly imperceptible CW attacks.