Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.




Large language models (LLMs) are increasingly consulted by parents for pediatric guidance, yet their safety under real-world adversarial pressures is poorly understood. Anxious parents often use urgent language that can compromise model safeguards, potentially causing harmful advice. PediatricAnxietyBench is an open-source benchmark of 300 high-quality queries across 10 pediatric topics (150 patient-derived, 150 adversarial) enabling reproducible evaluation. Two Llama models (70B and 8B) were assessed using a multi-dimensional safety framework covering diagnostic restraint, referral adherence, hedging, and emergency recognition. Adversarial queries incorporated parental pressure patterns, including urgency, economic barriers, and challenges to disclaimers. Mean safety score was 5.50/15 (SD=2.41). The 70B model outperformed the 8B model (6.26 vs 4.95, p<0.001) with lower critical failures (4.8% vs 12.0%, p=0.02). Adversarial queries reduced safety by 8% (p=0.03), with urgency causing the largest drop (-1.40). Vulnerabilities appeared in seizures (33.3% inappropriate diagnosis) and post-vaccination queries. Hedging strongly correlated with safety (r=0.68, p<0.001), while emergency recognition was absent. Model scale influences safety, yet all models showed vulnerabilities to realistic parental pressures. PediatricAnxietyBench provides a reusable adversarial evaluation framework to reveal clinically significant failure modes overlooked by standard benchmarks.
Large-language models (LLMs) have been shown to respond in a variety of ways for classification tasks outside of question-answering. LLM responses are sometimes called "hallucinations" since the output is not what is ex pected. Memorization strategies in LLMs are being studied in detail, with the goal of understanding how LLMs respond. We perform a deep dive into a classification task based on United States Supreme Court (SCOTUS) decisions. The SCOTUS corpus is an ideal classification task to study for LLM memory accuracy because it presents significant challenges due to extensive sentence length, complex legal terminology, non-standard structure, and domain-specific vocabulary. Experimentation is performed with the latest LLM fine tuning and retrieval-based approaches, such as parameter-efficient fine-tuning, auto-modeling, and others, on two traditional category-based SCOTUS classification tasks: one with 15 labeled topics and another with 279. We show that prompt-based models with memories, such as DeepSeek, can be more robust than previous BERT-based models on both tasks scoring about 2 points better than previous models not based on prompting.
Retrieval-Augmented Generation (RAG) has recently been extended to multimodal settings, connecting multimodal large language models (MLLMs) with vast corpora of external knowledge such as multimodal knowledge graphs (MMKGs). Despite their recent success, multimodal RAG in the audio-visual domain remains challenging due to 1) limited modality coverage and multi-hop connectivity of existing MMKGs, and 2) retrieval based solely on similarity in a shared multimodal embedding space, which fails to filter out off-topic or redundant knowledge. To address these limitations, we propose M$^3$KG-RAG, a Multi-hop Multimodal Knowledge Graph-enhanced RAG that retrieves query-aligned audio-visual knowledge from MMKGs, improving reasoning depth and answer faithfulness in MLLMs. Specifically, we devise a lightweight multi-agent pipeline to construct multi-hop MMKG (M$^3$KG), which contains context-enriched triplets of multimodal entities, enabling modality-wise retrieval based on input queries. Furthermore, we introduce GRASP (Grounded Retrieval And Selective Pruning), which ensures precise entity grounding to the query, evaluates answer-supporting relevance, and prunes redundant context to retain only knowledge essential for response generation. Extensive experiments across diverse multimodal benchmarks demonstrate that M$^3$KG-RAG significantly enhances MLLMs' multimodal reasoning and grounding over existing approaches.
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts' conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.



AI technologies have rapidly moved into business and research applications that involve large text corpora, including computational journalism research and newsroom settings. These models, trained on extant data from various sources, can be conceptualized as historical artifacts that encode decades-old attitudes and stereotypes. This paper investigates one such example trained on the broadly-used New York Times Annotated Corpus to create a multi-label classifier. Our use in research settings surfaced the concerning "blacks" thematic topic label. Through quantitative and qualitative means we investigate this label's use in the training corpus, what concepts it might be encoding in the trained classifier, and how those concepts impact our model use. Via the application of explainable AI methods, we find that the "blacks" label operates partially as a general "racism detector" across some minoritized groups. However, it performs poorly against expectations on modern examples such as COVID-19 era anti-Asian hate stories, and reporting on the Black Lives Matter movement. This case study of interrogating embedded biases in a model reveals how similar applications in newsroom settings can lead to unexpected outputs that could impact a wide variety of potential uses of any large language model-story discovery, audience targeting, summarization, etc. The fundamental tension this exposes for newsrooms is how to adopt AI-enabled workflow tools while reducing the risk of reproducing historical biases in news coverage.
The proliferation of harmful memes on online media poses significant risks to public health and stability. Existing detection methods heavily rely on large-scale labeled data for training, which necessitates substantial manual annotation efforts and limits their adaptability to the continually evolving nature of harmful content. To address these challenges, we present ALARM, the first lAbeL-free hARmful Meme detection framework powered by Large Multimodal Model (LMM) agent self-improvement. The core innovation of ALARM lies in exploiting the expressive information from "shallow" memes to iteratively enhance its ability to tackle more complex and subtle ones. ALARM consists of a novel Confidence-based Explicit Meme Identification mechanism that isolates the explicit memes from the original dataset and assigns them pseudo-labels. Besides, a new Pairwise Learning Guided Agent Self-Improvement paradigm is introduced, where the explicit memes are reorganized into contrastive pairs (positive vs. negative) to refine a learner LMM agent. This agent autonomously derives high-level detection cues from these pairs, which in turn empower the agent itself to handle complex and challenging memes effectively. Experiments on three diverse datasets demonstrate the superior performance and strong adaptability of ALARM to newly evolved memes. Notably, our method even outperforms label-driven methods. These results highlight the potential of label-free frameworks as a scalable and promising solution for adapting to novel forms and topics of harmful memes in dynamic online environments.
Dialogue Topic Segmentation (DTS) is crucial for understanding task-oriented public-channel communications, such as maritime VHF dialogues, which feature informal speech and implicit transitions. To address the limitations of traditional methods, we propose DASH-DTS, a novel LLM-based framework. Its core contributions are: (1) topic shift detection via dialogue handshake recognition; (2) contextual enhancement through similarity-guided example selection; and (3) the generation of selective positive and negative samples to improve model discrimination and robustness. Additionally, we release VHF-Dial, the first public dataset of real-world maritime VHF communications, to advance research in this domain. DASH-DTS provides interpretable reasoning and confidence scores for each segment. Experimental results demonstrate that our framework achieves several sota segmentation trusted accuracy on both VHF-Dial and standard benchmarks, establishing a strong foundation for stable monitoring and decision support in operational dialogues.




We propose a post-training method for lower-resource languages that preserves fluency of language models even when aligned by disfluent reward models. Preference-optimization is now a well-researched topic, but previous work has mostly addressed models for English and Chinese. Lower-resource languages lack both datasets written by native speakers and language models capable of generating fluent synthetic data. Thus, in this work, we focus on developing a fluent preference-aligned language model without any instruction-tuning data in the target language. Our approach uses an on-policy training method, which we compare with two common approaches: supervised finetuning on machine-translated data and multilingual finetuning. We conduct a case study on Norwegian Bokmål and evaluate fluency through native-speaker assessments. The results show that the on-policy aspect is crucial and outperforms the alternatives without relying on any hard-to-obtain data.
Trisecting agents, issues, and agent pairs are essential topics of three-way conflict analysis. They have been commonly studied based on either a rating or an auxiliary function. A rating function defines the positive, negative, or neutral ratings of agents on issues. An auxiliary function defines the alliance, conflict, and neutrality relations between agents. These functions measure two opposite aspects in a single function, leading to challenges in interpreting their aggregations over a group of issues or agents. For example, when studying agent relations regarding a set of issues, a standard aggregation takes the average of an auxiliary function concerning single issues. Therefore, a pair of alliance +1 and conflict -1 relations will produce the same result as a pair of neutrality 0 relations, although the attitudes represented by the two pairs are very different. To clarify semantics, we separate the two opposite aspects in an auxiliary function into a pair of alliance and conflict functions. Accordingly, we trisect the agents, issues, and agent pairs and investigate their applications in solving a few crucial questions in conflict analysis. Particularly, we explore the concepts of alliance sets and strategies. A real-world application is given to illustrate the proposed models.
The landscape of scientific peer review is rapidly evolving with the integration of Large Language Models (LLMs). This shift is driven by two parallel trends: the widespread individual adoption of LLMs by reviewers to manage workload (the "Lazy Reviewer" hypothesis) and the formal institutional deployment of AI-powered assessment systems by conferences like AAAI and Stanford's Agents4Science. This study investigates the robustness of these "LLM-as-a-Judge" systems (both illicit and sanctioned) to adversarial PDF manipulation. Unlike general jailbreaks, we focus on a distinct incentive: flipping "Reject" decisions to "Accept," for which we develop a novel evaluation metric which we term as WAVS (Weighted Adversarial Vulnerability Score). We curated a dataset of 200 scientific papers and adapted 15 domain-specific attack strategies to this task, evaluating them across 13 Language Models, including GPT-5, Claude Haiku, and DeepSeek. Our results demonstrate that obfuscation strategies like "Maximum Mark Magyk" successfully manipulate scores, achieving alarming decision flip rates even in large-scale models. We will release our complete dataset and injection framework to facilitate more research on this topic.