What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Jun 05, 2025
Abstract:Healthcare systems face significant challenges in managing and interpreting vast, heterogeneous patient data for personalized care. Existing approaches often focus on narrow use cases with a limited feature space, overlooking the complex, longitudinal interactions needed for a holistic understanding of patient health. In this work, we propose a novel approach to patient pathway modeling by transforming diverse electronic health record (EHR) data into a structured representation and designing a holistic pathway prediction model, EHR2Path, optimized to predict future health trajectories. Further, we introduce a novel summary mechanism that embeds long-term temporal context into topic-specific summary tokens, improving performance over text-only models, while being much more token-efficient. EHR2Path demonstrates strong performance in both next time-step prediction and longitudinal simulation, outperforming competitive baselines. It enables detailed simulations of patient trajectories, inherently targeting diverse evaluation tasks, such as forecasting vital signs, lab test results, or length-of-stay, opening a path towards predictive and personalized healthcare.
Via

May 30, 2025
Abstract:Endowing dialogue agents with persona information has proven to significantly improve the consistency and diversity of their generations. While much focus has been placed on aligning dialogues with provided personas, the adaptation to the interlocutor's profile remains largely underexplored. In this work, we investigate three key aspects: (1) a model's ability to align responses with both the provided persona and the interlocutor's; (2) its robustness when dealing with familiar versus unfamiliar interlocutors and topics, and (3) the impact of additional fine-tuning on specific persona-based dialogues. We evaluate dialogues generated with diverse speaker pairings and topics, framing the evaluation as an author identification task and employing both LLM-as-a-judge and human evaluations. By systematically masking or disclosing information about the interlocutor, we assess its impact on dialogue generation. Results show that access to the interlocutor's persona improves the recognition of the target speaker, while masking it does the opposite. Although models generalise well across topics, they struggle with unfamiliar interlocutors. Finally, we found that in zero-shot settings, LLMs often copy biographical details, facilitating identification but trivialising the task.
Via

Jun 13, 2025
Abstract:People get informed of a daily task plan through diverse media involving both texts and images. However, most prior research only focuses on LLM's capability of textual plan generation. The potential of large-scale models in providing text-image plans remains understudied. Generating high-quality text-image plans faces two main challenges: ensuring consistent alignment between two modalities and keeping coherence among visual steps. To address these challenges, we propose a novel framework that generates and refines text-image plans step-by-step. At each iteration, our framework (1) drafts the next textual step based on the prediction history; (2) edits the last visual step to obtain the next one; (3) extracts PDDL-like visual information; and (4) refines the draft with the extracted visual information. The textual and visual step produced in stage (4) and (2) will then serve as inputs for the next iteration. Our approach offers a plug-and-play improvement to various backbone models, such as Mistral-7B, Gemini-1.5, and GPT-4o. To evaluate the effectiveness of our approach, we collect a new benchmark consisting of 1,100 tasks and their text-image pair solutions covering 11 daily topics. We also design and validate a new set of metrics to evaluate the multimodal consistency and coherence in text-image plans. Extensive experiment results show the effectiveness of our approach on a range of backbone models against competitive baselines. Our code and data are available at https://github.com/psunlpgroup/MPlanner.
* 18 pages, 10 figures; Accepted to ACL 2025 Findings
Via

Jun 16, 2025
Abstract:The quality of the video dataset (image quality, resolution, and fine-grained caption) greatly influences the performance of the video generation model. The growing demand for video applications sets higher requirements for high-quality video generation models. For example, the generation of movie-level Ultra-High Definition (UHD) videos and the creation of 4K short video content. However, the existing public datasets cannot support related research and applications. In this paper, we first propose a high-quality open-sourced UHD-4K (22.4\% of which are 8K) text-to-video dataset named UltraVideo, which contains a wide range of topics (more than 100 kinds), and each video has 9 structured captions with one summarized caption (average of 824 words). Specifically, we carefully design a highly automated curation process with four stages to obtain the final high-quality dataset: \textit{i)} collection of diverse and high-quality video clips. \textit{ii)} statistical data filtering. \textit{iii)} model-based data purification. \textit{iv)} generation of comprehensive, structured captions. In addition, we expand Wan to UltraWan-1K/-4K, which can natively generate high-quality 1K/4K videos with more consistent text controllability, demonstrating the effectiveness of our data curation.We believe that this work can make a significant contribution to future research on UHD video generation. UltraVideo dataset and UltraWan models are available at https://xzc-zju.github.io/projects/UltraVideo.
Via

Jun 10, 2025
Abstract:The extent to which neural networks are able to acquire and represent symbolic rules remains a key topic of research and debate. Much current work focuses on the impressive capabilities of large language models, as well as their often ill-understood failures on a wide range of reasoning tasks. In this paper, in contrast, we investigate the generalization behavior of three key neural architectures (Transformers, Graph Convolution Networks and LSTMs) in a controlled task rooted in propositional logic. The task requires models to generate satisfying assignments for logical formulas, making it a structured and interpretable setting for studying compositionality. We introduce a balanced extension of an existing dataset to eliminate superficial patterns and enable testing on unseen operator combinations. Using this dataset, we evaluate the ability of the three architectures to generalize beyond the training distribution. While all models perform well in-distribution, we find that generalization to unseen patterns, particularly those involving negation, remains a significant challenge. Transformers fail to apply negation compositionally, unless structural biases are introduced. Our findings highlight persistent limitations in the ability of standard architectures to learn systematic representations of logical operators, suggesting the need for stronger inductive biases to support robust rule-based reasoning.
Via

Jun 11, 2025
Abstract:In this short note, we report and analyze a striking event: OpenAI's large language model o3 has outwitted all students in a university exam on thermodynamics. The thermodynamics exam is a difficult hurdle for most students, where they must show that they have mastered the fundamentals of this important topic. Consequently, the failure rates are very high, A-grades are rare - and they are considered proof of the students' exceptional intellectual abilities. This is because pattern learning does not help in the exam. The problems can only be solved by knowledgeably and creatively combining principles of thermodynamics. We have given our latest thermodynamics exam not only to the students but also to OpenAI's most powerful reasoning model, o3, and have assessed the answers of o3 exactly the same way as those of the students. In zero-shot mode, the model o3 solved all problems correctly, better than all students who took the exam; its overall score was in the range of the best scores we have seen in more than 10,000 similar exams since 1985. This is a turning point: machines now excel in complex tasks, usually taken as proof of human intellectual capabilities. We discuss the consequences this has for the work of engineers and the education of future engineers.
* This document is the unedited Author's version of a yet to be
Submitted Work to Physical Review Physics Education Research. 15 pages, 2
figures, Graphical Abstract, Highlights and SI available (12 pages)
Via

May 29, 2025
Abstract:Large Language Models are widely used for content moderation but often misclassify benign comments as toxic, leading to over-sensitivity. While previous research attributes this issue primarily to the presence of offensive terms, we reveal a potential cause beyond token level: LLMs exhibit systematic topic biases in their implicit associations. Inspired by cognitive psychology's implicit association tests, we introduce Topic Association Analysis, a semantic-level approach to quantify how LLMs associate certain topics with toxicity. By prompting LLMs to generate free-form scenario imagination for misclassified benign comments and analyzing their topic amplification levels, we find that more advanced models (e.g., GPT-4 Turbo) demonstrate stronger topic stereotype despite lower overall false positive rates. These biases suggest that LLMs do not merely react to explicit, offensive language but rely on learned topic associations, shaping their moderation decisions. Our findings highlight the need for refinement beyond keyword-based filtering, providing insights into the underlying mechanisms driving LLM over-sensitivity.
* Under review
Via

Jun 11, 2025
Abstract:Detecting AI-generated text is a difficult problem to begin with; detecting AI-generated text on social media is made even more difficult due to the short text length and informal, idiosyncratic language of the internet. It is nonetheless important to tackle this problem, as social media represents a significant attack vector in online influence campaigns, which may be bolstered through the use of mass-produced AI-generated posts supporting (or opposing) particular policies, decisions, or events. We approach this problem with the mindset and resources of a reasonably sophisticated threat actor, and create a dataset of 505,159 AI-generated social media posts from a combination of open-source, closed-source, and fine-tuned LLMs, covering 11 different controversial topics. We show that while the posts can be detected under typical research assumptions about knowledge of and access to the generating models, under the more realistic assumption that an attacker will not release their fine-tuned model to the public, detectability drops dramatically. This result is confirmed with a human study. Ablation experiments highlight the vulnerability of various detection algorithms to fine-tuned LLMs. This result has implications across all detection domains, since fine-tuning is a generally applicable and realistic LLM use case.
* to appear in ACL Findings
Via

Jun 14, 2025
Abstract:In this paper, we introduce DoTA-RAG (Dynamic-of-Thought Aggregation RAG), a retrieval-augmented generation system optimized for high-throughput, large-scale web knowledge indexes. Traditional RAG pipelines often suffer from high latency and limited accuracy over massive, diverse datasets. DoTA-RAG addresses these challenges with a three-stage pipeline: query rewriting, dynamic routing to specialized sub-indexes, and multi-stage retrieval and ranking. We further enhance retrieval by evaluating and selecting a superior embedding model, re-embedding the large FineWeb-10BT corpus. Moreover, we create a diverse Q&A dataset of 500 questions generated via the DataMorgana setup across a broad range of WebOrganizer topics and formats. DoTA-RAG improves the answer correctness score from 0.752 (baseline, using LiveRAG pre-built vector store) to 1.478 while maintaining low latency, and it achieves a 0.929 correctness score on the Live Challenge Day. These results highlight DoTA-RAG's potential for practical deployment in domains requiring fast, reliable access to large and evolving knowledge sources.
* SIGIR LiveRAG 2025 (oral presentation)
Via

Jun 05, 2025
Abstract:Given the continuous increase in dataset sizes and the complexity of forecasting models, the trade-off between forecast accuracy and computational cost is emerging as an extremely relevant topic, especially in the context of ensemble learning for time series forecasting. To asses it, we evaluated ten base models and eight ensemble configurations across two large-scale retail datasets (M5 and VN1), considering both point and probabilistic accuracy under varying retraining frequencies. We showed that ensembles consistently improve forecasting performance, particularly in probabilistic settings. However, these gains come at a substantial computational cost, especially for larger, accuracy-driven ensembles. We found that reducing retraining frequency significantly lowers costs, with minimal impact on accuracy, particularly for point forecasts. Moreover, efficiency-driven ensembles offer a strong balance, achieving competitive accuracy with considerably lower costs compared to accuracy-optimized combinations. Most importantly, small ensembles of two or three models are often sufficient to achieve near-optimal results. These findings provide practical guidelines for deploying scalable and cost-efficient forecasting systems, supporting the broader goals of sustainable AI in forecasting. Overall, this work shows that careful ensemble design and retraining strategy selection can yield accurate, robust, and cost-effective forecasts suitable for real-world applications.
Via
