Text classification is the process of categorizing text documents into predefined categories or labels.
Stable Diffusion (SD) often produces degraded outputs when the training dataset contains adversarial noise. Adversarial purification offers a promising solution by removing adversarial noise from contaminated data. However, existing purification methods are primarily designed for classification tasks and fail to address SD-specific adversarial strategies, such as attacks targeting the VAE encoder, UNet denoiser, or both. To address the gap in SD security, we propose Universal Diffusion Adversarial Purification (UDAP), a novel framework tailored for defending adversarial attacks targeting SD models. UDAP leverages the distinct reconstruction behaviors of clean and adversarial images during Denoising Diffusion Implicit Models (DDIM) inversion to optimize the purification process. By minimizing the DDIM metric loss, UDAP can effectively remove adversarial noise. Additionally, we introduce a dynamic epoch adjustment strategy that adapts optimization iterations based on reconstruction errors, significantly improving efficiency without sacrificing purification quality. Experiments demonstrate UDAP's robustness against diverse adversarial methods, including PID (VAE-targeted), Anti-DreamBooth (UNet-targeted), MIST (hybrid), and robustness-enhanced variants like Anti-Diffusion (Anti-DF) and MetaCloak. UDAP also generalizes well across SD versions and text prompts, showcasing its practical applicability in real-world scenarios.
Recent advances in search-augmented large reasoning models (LRMs) enable the retrieval of external knowledge to reduce hallucinations in multistep reasoning. However, their ability to operate on graph-structured data, prevalent in domains such as e-commerce, social networks, and scientific citations, remains underexplored. Unlike plain text corpora, graphs encode rich topological signals that connect related entities and can serve as valuable priors for retrieval, enabling more targeted search and improved reasoning efficiency. Yet, effectively leveraging such structure poses unique challenges, including the difficulty of generating graph-expressive queries and ensuring reliable retrieval that balances structural and semantic relevance. To address this gap, we introduce GraphSearch, the first framework that extends search-augmented reasoning to graph learning, enabling zero-shot graph learning without task-specific fine-tuning. GraphSearch combines a Graph-aware Query Planner, which disentangles search space (e.g., 1-hop, multi-hop, or global neighbors) from semantic queries, with a Graph-aware Retriever, which constructs candidate sets based on topology and ranks them using a hybrid scoring function. We further instantiate two traversal modes: GraphSearch-R, which recursively expands neighborhoods hop by hop, and GraphSearch-F, which flexibly retrieves across local and global neighborhoods without hop constraints. Extensive experiments across diverse benchmarks show that GraphSearch achieves competitive or even superior performance compared to supervised graph learning methods, setting state-of-the-art results in zero-shot node classification and link prediction. These findings position GraphSearch as a flexible and generalizable paradigm for agentic reasoning over graphs.
Text classification plays an important role in various downstream text-related tasks, such as sentiment analysis, fake news detection, and public opinion analysis. Recently, text classification based on Graph Neural Networks (GNNs) has made significant progress due to their strong capabilities of structural relationship learning. However, these approaches still face two major limitations. First, these approaches fail to fully consider the diverse structural information across word pairs, e.g., co-occurrence, syntax, and semantics. Furthermore, they neglect sequence information in the text graph structure information learning module and can not classify texts with new words and relations. In this paper, we propose a Novel Graph-Sequence Learning Model for Inductive Text Classification (TextGSL) to address the previously mentioned issues. More specifically, we construct a single text-level graph for all words in each text and establish different edge types based on the diverse relationships between word pairs. Building upon this, we design an adaptive multi-edge message-passing paradigm to aggregate diverse structural information between word pairs. Additionally, sequential information among text data can be captured by the proposed TextGSL through the incorporation of Transformer layers. Therefore, TextGSL can learn more discriminative text representations. TextGSL has been comprehensively compared with several strong baselines. The experimental results on diverse benchmarking datasets demonstrate that TextGSL outperforms these baselines in terms of accuracy.
Malicious image manipulation threatens public safety and requires efficient localization methods. Existing approaches depend on costly pixel-level annotations which make training expensive. Existing weakly supervised methods rely only on image-level binary labels and focus on global classification, often overlooking local edge cues that are critical for precise localization. We observe that feature variations at manipulated boundaries are substantially larger than in interior regions. To address this gap, we propose Semantic-Agnostic Prompt Learning (SAPL) in CLIP, which learns text prompts that intentionally encode non-semantic, boundary-centric cues so that CLIPs multimodal similarity highlights manipulation edges rather than high-level object semantics. SAPL combines two complementary modules Edge-aware Contextual Prompt Learning (ECPL) and Hierarchical Edge Contrastive Learning (HECL) to exploit edge information in both textual and visual spaces. The proposed ECPL leverages edge-enhanced image features to generate learnable textual prompts via an attention mechanism, embedding semantic-irrelevant information into text features, to guide CLIP focusing on manipulation edges. The proposed HECL extract genuine and manipulated edge patches, and utilize contrastive learning to boost the discrimination between genuine edge patches and manipulated edge patches. Finally, we predict the manipulated regions from the similarity map after processing. Extensive experiments on multiple public benchmarks demonstrate that SAPL significantly outperforms existing approaches, achieving state-of-the-art localization performance.
Augmenting toxic language data in a controllable and class-specific manner is crucial for improving robustness in toxicity classification, yet remains challenging due to limited supervision and distributional skew. We propose ToxiGAN, a class-aware text augmentation framework that combines adversarial generation with semantic guidance from large language models (LLMs). To address common issues in GAN-based augmentation such as mode collapse and semantic drift, ToxiGAN introduces a two-step directional training strategy and leverages LLM-generated neutral texts as semantic ballast. Unlike prior work that treats LLMs as static generators, our approach dynamically selects neutral exemplars to provide balanced guidance. Toxic samples are explicitly optimized to diverge from these exemplars, reinforcing class-specific contrastive signals. Experiments on four hate speech benchmarks show that ToxiGAN achieves the strongest average performance in both macro-F1 and hate-F1, consistently outperforming traditional and LLM-based augmentation methods. Ablation and sensitivity analyses further confirm the benefits of semantic ballast and directional training in enhancing classifier robustness.
Semantic text classification has undergone significant advances in recent years due to the rise of large language models (LLMs) and their high dimensional embeddings. While LLM-embeddings are frequently used to store and retrieve text by semantic similarity in vector databases, the global structure semantic relationships in text corpora often remains opaque. Herein we propose a nested density clustering approach, to infer hierarchical trees of semantically related texts. The method starts by identifying texts of strong semantic similarity as it searches for dense clusters in LLM embedding space. As the density criterion is gradually relaxed, these dense clusters merge into more diffuse clusters, until the whole dataset is represented by a single cluster -- the root of the tree. By embedding dense clusters into increasingly diffuse ones, we construct a tree structure that captures hierarchical semantic relationships among texts. We outline how this approach can be used to classify textual data for abstracts of scientific abstracts as a case study. This enables the data-driven discovery research areas and their subfields without predefined categories. To evaluate the general applicability of the method, we further apply it to established benchmark datasets such as the 20 Newsgroups and IMDB 50k Movie Reviews, demonstrating its robustness across domains. Finally we discuss possible applications on scientometrics, topic evolution, highlighting how nested density trees can reveal semantic structure and evolution in textual datasets.
Hate speech detection on social media faces challenges in both accuracy and explainability, especially for underexplored Indic languages. We propose a novel explainability-guided training framework, X-MuTeST (eXplainable Multilingual haTe Speech deTection), for hate speech detection that combines high-level semantic reasoning from large language models (LLMs) with traditional attention-enhancing techniques. We extend this research to Hindi and Telugu alongside English by providing benchmark human-annotated rationales for each word to justify the assigned class label. The X-MuTeST explainability method computes the difference between the prediction probabilities of the original text and those of unigrams, bigrams, and trigrams. Final explanations are computed as the union between LLM explanations and X-MuTeST explanations. We show that leveraging human rationales during training enhances both classification performance and explainability. Moreover, combining human rationales with our explainability method to refine the model attention yields further improvements. We evaluate explainability using Plausibility metrics such as Token-F1 and IOU-F1 and Faithfulness metrics such as Comprehensiveness and Sufficiency. By focusing on under-resourced languages, our work advances hate speech detection across diverse linguistic contexts. Our dataset includes token-level rationale annotations for 6,004 Hindi, 4,492 Telugu, and 6,334 English samples. Data and code are available on https://github.com/ziarehman30/X-MuTeST
The availability of structured legal data is important for advancing Natural Language Processing (NLP) techniques for the German legal system. One of the most widely used datasets, Open Legal Data, provides a large-scale collection of German court decisions. While the metadata in this raw dataset is consistently structured, the decision texts themselves are inconsistently formatted and often lack clearly marked sections. Reliable separation of these sections is important not only for rhetorical role classification but also for downstream tasks such as retrieval and citation analysis. In this work, we introduce a cleaned and sectioned dataset of 251,038 German court decisions derived from the official Open Legal Data dataset. We systematically separated three important sections in German court decisions, namely Tenor (operative part of the decision), Tatbestand (facts of the case), and Entscheidungsgründe (judicial reasoning), which are often inconsistently represented in the original dataset. To ensure the reliability of our extraction process, we used Cochran's formula with a 95% confidence level and a 5% margin of error to draw a statistically representative random sample of 384 cases, and manually verified that all three sections were correctly identified. We also extracted the Rechtsmittelbelehrung (appeal notice) as a separate field, since it is a procedural instruction and not part of the decision itself. The resulting corpus is publicly available in the JSONL format, making it an accessible resource for further research on the German legal system.
Current foundation models for 3D shapes excel at global tasks (retrieval, classification) but transfer poorly to local part-level reasoning. Recent approaches leverage vision and language foundation models to directly solve dense tasks through multi-view renderings and text queries. While promising, these pipelines require expensive inference over multiple renderings, depend heavily on large language-model (LLM) prompt engineering for captions, and fail to exploit the inherent 3D geometry of shapes. We address this gap by introducing an encoder-only 3D model that produces language-aligned patch-level features directly from point clouds. Our pre-training approach builds on existing data engines that generate part-annotated 3D shapes by pairing multi-view SAM regions with VLM captioning. Using this data, we train a point cloud transformer encoder in two stages: (1) distillation of dense 2D features from visual encoders such as DINOv2 into 3D patches, and (2) alignment of these patch embeddings with part-level text embeddings through a multi-positive contrastive objective. Our 3D encoder achieves zero-shot 3D part segmentation with fast single-pass inference without any test-time multi-view rendering, while significantly outperforming previous rendering-based and feed-forward approaches across several 3D part segmentation benchmarks. Project website: https://souhail-hadgi.github.io/patchalign3dsite/
Existing text-driven infrared and visible image fusion approaches often rely on textual information at the sentence level, which can lead to semantic noise from redundant text and fail to fully exploit the deeper semantic value of textual information. To address these issues, we propose a novel fusion approach named Entity-Guided Multi-Task learning for infrared and visible image fusion (EGMT). Our approach includes three key innovative components: (i) A principled method is proposed to extract entity-level textual information from image captions generated by large vision-language models, eliminating semantic noise from raw text while preserving critical semantic information; (ii) A parallel multi-task learning architecture is constructed, which integrates image fusion with a multi-label classification task. By using entities as pseudo-labels, the multi-label classification task provides semantic supervision, enabling the model to achieve a deeper understanding of image content and significantly improving the quality and semantic density of the fused image; (iii) An entity-guided cross-modal interactive module is also developed to facilitate the fine-grained interaction between visual and entity-level textual features, which enhances feature representation by capturing cross-modal dependencies at both inter-visual and visual-entity levels. To promote the wide application of the entity-guided image fusion framework, we release the entity-annotated version of four public datasets (i.e., TNO, RoadScene, M3FD, and MSRS). Extensive experiments demonstrate that EGMT achieves superior performance in preserving salient targets, texture details, and semantic consistency, compared to the state-of-the-art methods. The code and dataset will be publicly available at https://github.com/wyshao-01/EGMT.