What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Sep 05, 2025
Abstract:Fast and accurate object perception in low-light traffic scenes has attracted increasing attention. However, due to severe illumination degradation and the lack of reliable visual cues, existing perception models and methods struggle to quickly adapt to and accurately predict in low-light environments. Moreover, there is the absence of available large-scale benchmark specifically focused on low-light traffic scenes. To bridge this gap, we introduce a physically grounded illumination degradation method tailored to real-world low-light settings and construct Dark-traffic, the largest densely annotated dataset to date for low-light traffic scenes, supporting object detection, instance segmentation, and optical flow estimation. We further propose the Separable Learning Vision Model (SLVM), a biologically inspired framework designed to enhance perception under adverse lighting. SLVM integrates four key components: a light-adaptive pupillary mechanism for illumination-sensitive feature extraction, a feature-level separable learning strategy for efficient representation, task-specific decoupled branches for multi-task separable learning, and a spatial misalignment-aware fusion module for precise multi-feature alignment. Extensive experiments demonstrate that SLVM achieves state-of-the-art performance with reduced computational overhead. Notably, it outperforms RT-DETR by 11.2 percentage points in detection, YOLOv12 by 6.1 percentage points in instance segmentation, and reduces endpoint error (EPE) of baseline by 12.37% on Dark-traffic. On the LIS benchmark, the end-to-end trained SLVM surpasses Swin Transformer+EnlightenGAN and ConvNeXt-T+EnlightenGAN by an average of 11 percentage points across key metrics, and exceeds Mask RCNN (with light enhancement) by 3.1 percentage points. The Dark-traffic dataset and complete code is released at https://github.com/alanli1997/slvm.
Via

Sep 04, 2025
Abstract:AI models rely on annotated data to learn pattern and perform prediction. Annotation is usually a labor-intensive step that require associating labels ranging from a simple classification label to more complex tasks such as object detection, oriented bounding box estimation, and instance segmentation. Traditional tools often require extensive manual input, limiting scalability for large datasets. To address this, we introduce VisioFirm, an open-source web application designed to streamline image labeling through AI-assisted automation. VisioFirm integrates state-of-the-art foundation models into an interface with a filtering pipeline to reduce human-in-the-loop efforts. This hybrid approach employs CLIP combined with pre-trained detectors like Ultralytics models for common classes and zero-shot models such as Grounding DINO for custom labels, generating initial annotations with low-confidence thresholding to maximize recall. Through this framework, when tested on COCO-type of classes, initial prediction have been proven to be mostly correct though the users can refine these via interactive tools supporting bounding boxes, oriented bounding boxes, and polygons. Additionally, VisioFirm has on-the-fly segmentation powered by Segment Anything accelerated through WebGPU for browser-side efficiency. The tool supports multiple export formats (YOLO, COCO, Pascal VOC, CSV) and operates offline after model caching, enhancing accessibility. VisioFirm demonstrates up to 90\% reduction in manual effort through benchmarks on diverse datasets, while maintaining high annotation accuracy via clustering of connected CLIP-based disambiguate components and IoU-graph for redundant detection suppression. VisioFirm can be accessed from \href{https://github.com/OschAI/VisioFirm}{https://github.com/OschAI/VisioFirm}.
Via

Aug 29, 2025
Abstract:Recent advances in diffusion-based generative models have demonstrated significant potential in augmenting scarce datasets for object detection tasks. Nevertheless, most recent models rely on resource-intensive full fine-tuning of large-scale diffusion models, requiring enterprise-grade GPUs (e.g., NVIDIA V100) and thousands of synthetic images. To address these limitations, we propose Flux LoRA Augmentation (FLORA), a lightweight synthetic data generation pipeline. Our approach uses the Flux 1.1 Dev diffusion model, fine-tuned exclusively through Low-Rank Adaptation (LoRA). This dramatically reduces computational requirements, enabling synthetic dataset generation with a consumer-grade GPU (e.g., NVIDIA RTX 4090). We empirically evaluate our approach on seven diverse object detection datasets. Our results demonstrate that training object detectors with just 500 synthetic images generated by our approach yields superior detection performance compared to models trained on 5000 synthetic images from the ODGEN baseline, achieving improvements of up to 21.3% in mAP@.50:.95. This work demonstrates that it is possible to surpass state-of-the-art performance with far greater efficiency, as FLORA achieves superior results using only 10% of the data and a fraction of the computational cost. This work demonstrates that a quality and efficiency-focused approach is more effective than brute-force generation, making advanced synthetic data creation more practical and accessible for real-world scenarios.
Via

Aug 27, 2025
Abstract:Monocular 3D object detection (Mono3D) is a fundamental computer vision task that estimates an object's class, 3D position, dimensions, and orientation from a single image. Its applications, including autonomous driving, augmented reality, and robotics, critically rely on accurate 3D environmental understanding. This thesis addresses the challenge of generalizing Mono3D models to diverse scenarios, including occlusions, datasets, object sizes, and camera parameters. To enhance occlusion robustness, we propose a mathematically differentiable NMS (GrooMeD-NMS). To improve generalization to new datasets, we explore depth equivariant (DEVIANT) backbones. We address the issue of large object detection, demonstrating that it's not solely a data imbalance or receptive field problem but also a noise sensitivity issue. To mitigate this, we introduce a segmentation-based approach in bird's-eye view with dice loss (SeaBird). Finally, we mathematically analyze the extrapolation of Mono3D models to unseen camera heights and improve Mono3D generalization in such out-of-distribution settings.
* PhD Thesis submitted to MSU
Via

Aug 27, 2025
Abstract:Object hallucination in large vision-language models presents a significant challenge to their safe deployment in real-world applications. Recent works have proposed object-level hallucination scores to estimate the likelihood of object hallucination; however, these methods typically adopt either a global or local perspective in isolation, which may limit detection reliability. In this paper, we introduce GLSim, a novel training-free object hallucination detection framework that leverages complementary global and local embedding similarity signals between image and text modalities, enabling more accurate and reliable hallucination detection in diverse scenarios. We comprehensively benchmark existing object hallucination detection methods and demonstrate that GLSim achieves superior detection performance, outperforming competitive baselines by a significant margin.
Via

Aug 28, 2025
Abstract:Detecting hidden or partially concealed objects remains a fundamental challenge in multimodal environments, where factors like occlusion, camouflage, and lighting variations significantly hinder performance. Traditional RGB-based detection methods often fail under such adverse conditions, motivating the need for more robust, modality-agnostic approaches. In this work, we present HiddenObject, a fusion framework that integrates RGB, thermal, and depth data using a Mamba-based fusion mechanism. Our method captures complementary signals across modalities, enabling enhanced detection of obscured or camouflaged targets. Specifically, the proposed approach identifies modality-specific features and fuses them in a unified representation that generalizes well across challenging scenarios. We validate HiddenObject across multiple benchmark datasets, demonstrating state-of-the-art or competitive performance compared to existing methods. These results highlight the efficacy of our fusion design and expose key limitations in current unimodal and na\"ive fusion strategies. More broadly, our findings suggest that Mamba-based fusion architectures can significantly advance the field of multimodal object detection, especially under visually degraded or complex conditions.
Via

Aug 27, 2025
Abstract:Segment Anything Model (SAM) has demonstrated remarkable capabilities in solving light field salient object detection (LF SOD). However, most existing models tend to neglect the extraction of prompt information under this task. Meanwhile, traditional models ignore the analysis of frequency-domain information, which leads to small objects being overwhelmed by noise. In this paper, we put forward a novel model called self-prompting light field segment anything model (SPLF-SAM), equipped with unified multi-scale feature embedding block (UMFEB) and a multi-scale adaptive filtering adapter (MAFA). UMFEB is capable of identifying multiple objects of varying sizes, while MAFA, by learning frequency features, effectively prevents small objects from being overwhelmed by noise. Extensive experiments have demonstrated the superiority of our method over ten state-of-the-art (SOTA) LF SOD methods. Our code will be available at https://github.com/XucherCH/splfsam.
Via

Aug 26, 2025
Abstract:Underwater object detection is critical for monitoring marine ecosystems but poses unique challenges, including degraded image quality, imbalanced class distribution, and distinct visual characteristics. Not every species is detected equally well, yet underlying causes remain unclear. We address two key research questions: 1) What factors beyond data quantity drive class-specific performance disparities? 2) How can we systematically improve detection of under-performing marine species? We manipulate the DUO dataset to separate the object detection task into localization and classification and investigate the under-performance of the scallop class. Localization analysis using YOLO11 and TIDE finds that foreground-background discrimination is the most problematic stage regardless of data quantity. Classification experiments reveal persistent precision gaps even with balanced data, indicating intrinsic feature-based challenges beyond data scarcity and inter-class dependencies. We recommend imbalanced distributions when prioritizing precision, and balanced distributions when prioritizing recall. Improving under-performing classes should focus on algorithmic advances, especially within localization modules. We publicly release our code and datasets.
* 10 pages
Via

Sep 04, 2025
Abstract:Grasping assistance is essential for restoring autonomy in individuals with motor impairments, particularly in unstructured environments where object categories and user intentions are diverse and unpredictable. We present OVGrasp, a hierarchical control framework for soft exoskeleton-based grasp assistance that integrates RGB-D vision, open-vocabulary prompts, and voice commands to enable robust multimodal interaction. To enhance generalization in open environments, OVGrasp incorporates a vision-language foundation model with an open-vocabulary mechanism, allowing zero-shot detection of previously unseen objects without retraining. A multimodal decision-maker further fuses spatial and linguistic cues to infer user intent, such as grasp or release, in multi-object scenarios. We deploy the complete framework on a custom egocentric-view wearable exoskeleton and conduct systematic evaluations on 15 objects across three grasp types. Experimental results with ten participants demonstrate that OVGrasp achieves a grasping ability score (GAS) of 87.00%, outperforming state-of-the-art baselines and achieving improved kinematic alignment with natural hand motion.
Via

Aug 27, 2025
Abstract:Active learning (AL) for real-world object detection faces computational and reliability challenges that limit practical deployment. Developing new AL methods requires training multiple detectors across iterations to compare against existing approaches. This creates high costs for autonomous driving datasets where the training of one detector requires up to 282 GPU hours. Additionally, AL method rankings vary substantially across validation sets, compromising reliability in safety-critical transportation systems. We introduce object-based set similarity ($\mathrm{OSS}$), a metric that addresses these challenges. $\mathrm{OSS}$ (1) quantifies AL method effectiveness without requiring detector training by measuring similarity between training sets and target domains using object-level features. This enables the elimination of ineffective AL methods before training. Furthermore, $\mathrm{OSS}$ (2) enables the selection of representative validation sets for robust evaluation. We validate our similarity-based approach on three autonomous driving datasets (KITTI, BDD100K, CODA) using uncertainty-based AL methods as a case study with two detector architectures (EfficientDet, YOLOv3). This work is the first to unify AL training and evaluation strategies in object detection based on object similarity. $\mathrm{OSS}$ is detector-agnostic, requires only labeled object crops, and integrates with existing AL pipelines. This provides a practical framework for deploying AL in real-world applications where computational efficiency and evaluation reliability are critical. Code is available at https://mos-ks.github.io/publications/.
* This work has been submitted to the IEEE for possible publication
Via
