Large language models have emerged as powerful zero-shot rerankers for retrieval-augmented generation, offering strong generalization without task-specific training. However, existing LLM reranking methods either rely on heuristics that fail to fully exploit the information revealed by each ranking decision or are inefficient when they do. We introduce a tournament graph framework that provides a principled foundation for $k$-wise reranking. Our key observation is that each $k$-document comparison reveals a complete tournament of $\binom{k}{2}$ pairwise preferences. These tournaments are aggregated into a global preference graph, whose transitive closure yields many additional orderings without further model invocations. We formalize when a candidate's rank is certifiably determined and design a query schedule that greedily maximizes information gain towards identifying the top-$m$ items. Our framework also gracefully handles non-transitive preferences - cycles induced by LLM judgments - by collapsing them into equivalence classes that yield principled tiered rankings. Empirically, across 14 benchmarks and 5 LLMs, our method achieves Pareto dominance over existing methods: matching or exceeding accuracy while requiring 25-40% fewer tokens than comparable approaches, and 7$\times$ fewer than pairwise methods at near-identical quality.
We present protein autoregressive modeling (PAR), the first multi-scale autoregressive framework for protein backbone generation via coarse-to-fine next-scale prediction. Using the hierarchical nature of proteins, PAR generates structures that mimic sculpting a statue, forming a coarse topology and refining structural details over scales. To achieve this, PAR consists of three key components: (i) multi-scale downsampling operations that represent protein structures across multiple scales during training; (ii) an autoregressive transformer that encodes multi-scale information and produces conditional embeddings to guide structure generation; (iii) a flow-based backbone decoder that generates backbone atoms conditioned on these embeddings. Moreover, autoregressive models suffer from exposure bias, caused by the training and the generation procedure mismatch, and substantially degrades structure generation quality. We effectively alleviate this issue by adopting noisy context learning and scheduled sampling, enabling robust backbone generation. Notably, PAR exhibits strong zero-shot generalization, supporting flexible human-prompted conditional generation and motif scaffolding without requiring fine-tuning. On the unconditional generation benchmark, PAR effectively learns protein distributions and produces backbones of high design quality, and exhibits favorable scaling behavior. Together, these properties establish PAR as a promising framework for protein structure generation.
Large-scale vision-language models (VLMs) such as CLIP exhibit strong zero-shot generalization, but adapting them to downstream tasks typically requires costly labeled data. Existing unsupervised self-training methods rely on pseudo-labeling, yet often suffer from unreliable confidence filtering, confirmation bias, and underutilization of low-confidence samples. We propose Collaborative Fine-Tuning (CoFT), an unsupervised adaptation framework that leverages unlabeled data through a dual-model, cross-modal collaboration mechanism. CoFT introduces a dual-prompt learning strategy with positive and negative textual prompts to explicitly model pseudo-label cleanliness in a sample-dependent manner, removing the need for hand-crafted thresholds or noise assumptions. The negative prompt also regularizes lightweight visual adaptation modules, improving robustness under noisy supervision. CoFT employs a two-phase training scheme, transitioning from parameter-efficient fine-tuning on high-confidence samples to full fine-tuning guided by collaboratively filtered pseudo-labels. Building on CoFT, CoFT+ further enhances adaptation via iterative fine-tuning, momentum contrastive learning, and LLM-generated prompts. Extensive experiments demonstrate consistent gains over existing unsupervised methods and even few-shot supervised baselines.
The Moore-Penrose Pseudo-inverse (PInv) serves as the fundamental solution for linear systems. In this paper, we propose a natural generalization of PInv to the nonlinear regime in general and to neural networks in particular. We introduce Surjective Pseudo-invertible Neural Networks (SPNN), a class of architectures explicitly designed to admit a tractable non-linear PInv. The proposed non-linear PInv and its implementation in SPNN satisfy fundamental geometric properties. One such property is null-space projection or "Back-Projection", $x' = x + A^\dagger(y-Ax)$, which moves a sample $x$ to its closest consistent state $x'$ satisfying $Ax=y$. We formalize Non-Linear Back-Projection (NLBP), a method that guarantees the same consistency constraint for non-linear mappings $f(x)=y$ via our defined PInv. We leverage SPNNs to expand the scope of zero-shot inverse problems. Diffusion-based null-space projection has revolutionized zero-shot solving for linear inverse problems by exploiting closed-form back-projection. We extend this method to non-linear degradations. Here, "degradation" is broadly generalized to include any non-linear loss of information, spanning from optical distortions to semantic abstractions like classification. This approach enables zero-shot inversion of complex degradations and allows precise semantic control over generative outputs without retraining the diffusion prior.
Rapid urban expansion has fueled the growth of informal settlements in major cities of low- and middle-income countries, with Lahore and Karachi in Pakistan and Mumbai in India serving as prominent examples. However, large-scale mapping of these settlements is severely constrained not only by the scarcity of annotations but by inherent data quality challenges, specifically high spectral ambiguity between formal and informal structures and significant annotation noise. We address this by introducing a benchmark dataset for Lahore, constructed from scratch, along with companion datasets for Karachi and Mumbai, which were derived from verified administrative boundaries, totaling 1,869 $\text{km}^2$ of area. To evaluate the global robustness of our framework, we extend our experiments to five additional established benchmarks, encompassing eight cities across three continents, and provide comprehensive data quality assessments of all datasets. We also propose a new semi-supervised segmentation framework designed to mitigate the class imbalance and feature degradation inherent in standard semi-supervised learning pipelines. Our method integrates a Class-Aware Adaptive Thresholding mechanism that dynamically adjusts confidence thresholds to prevent minority class suppression and a Prototype Bank System that enforces semantic consistency by anchoring predictions to historically learned high-fidelity feature representations. Extensive experiments across a total of eight cities spanning three continents demonstrate that our approach outperforms state-of-the-art semi-supervised baselines. Most notably, our method demonstrates superior domain transfer capability whereby a model trained on only 10% of source labels reaches a 0.461 mIoU on unseen geographies and outperforms the zero-shot generalization of fully supervised models.
Visual Language Navigation (VLN) is one of the fundamental capabilities for embodied intelligence and a critical challenge that urgently needs to be addressed. However, existing methods are still unsatisfactory in terms of both success rate (SR) and generalization: Supervised Fine-Tuning (SFT) approaches typically achieve higher SR, while Training-Free (TF) approaches often generalize better, but it is difficult to obtain both simultaneously. To this end, we propose a Memory-Execute-Review framework. It consists of three parts: a hierarchical memory module for providing information support, an execute module for routine decision-making and actions, and a review module for handling abnormal situations and correcting behavior. We validated the effectiveness of this framework on the Object Goal Navigation task. Across 4 datasets, our average SR achieved absolute improvements of 7% and 5% compared to all baseline methods under TF and Zero-Shot (ZS) settings, respectively. On the most commonly used HM3D_v0.1 and the more challenging open vocabulary dataset HM3D_OVON, the SR improved by 8% and 6%, under ZS settings. Furthermore, on the MP3D and HM3D_OVON datasets, our method not only outperformed all TF methods but also surpassed all SFT methods, achieving comprehensive leadership in both SR (5% and 2%) and generalization.
Learning-based whole-body controllers have become a key driver for humanoid robots, yet most existing approaches require robot-specific training. In this paper, we study the problem of cross-embodiment humanoid control and show that a single policy can robustly generalize across a wide range of humanoid robot designs with one-time training. We introduce XHugWBC, a novel cross-embodiment training framework that enables generalist humanoid control through: (1) physics-consistent morphological randomization, (2) semantically aligned observation and action spaces across diverse humanoid robots, and (3) effective policy architectures modeling morphological and dynamical properties. XHugWBC is not tied to any specific robot. Instead, it internalizes a broad distribution of morphological and dynamical characteristics during training. By learning motion priors from diverse randomized embodiments, the policy acquires a strong structural bias that supports zero-shot transfer to previously unseen robots. Experiments on twelve simulated humanoids and seven real-world robots demonstrate the strong generalization and robustness of the resulting universal controller.
Large Language Models (LLMs) exhibit potential for explainable recommendation systems but overlook collaborative signals, while prevailing methods treat recommendation and explanation as separate tasks, resulting in a memory footprint. We present RGCF-XRec, a hybrid framework that introduces reasoning-guided collaborative filtering (CF) knowledge into a language model to deliver explainable sequential recommendations in a single step. Theoretical grounding and empirical findings reveal that RGCF-XRec offers three key merits over leading CF-aware LLM-based methods: (1) reasoning-guided augmentation of CF knowledge through contextual prompting to discover latent preferences and interpretable reasoning paths; (2) an efficient scoring mechanism based on four dimensions: coherence, completeness, relevance, and consistency to mitigate noisy CF reasoning traces and retain high-quality explanations; (3) a unified representation learning network that encodes collaborative and semantic signals, enabling a structured prompt to condition the LLM for explainable sequential recommendation. RGCF-XRec demonstrates consistent improvements across Amazon datasets, Sports, Toys, and Beauty, comprising 642,503 user-item interactions. It improves HR@10 by 7.38\% in Sports and 4.59\% in Toys, along with ROUGE-L by 8.02\% and 3.49\%, respectively. It reduces the cold warm performance gap, achieving overall gains of 14.5\% in cold-start and 11.9\% in warm start scenarios, and enhances zero-shot HR@5 by 18.54\% in Beauty and 23.16\% in Toys, highlighting effective generalization and robustness. Moreover, RGCF-XRec achieves training efficiency with a lightweight LLaMA 3.2-3B backbone, ensuring scalability for real-world applications.
Task-oriented handovers (TOH) are fundamental to effective human-robot collaboration, requiring robots to present objects in a way that supports the human's intended post-handover use. Existing approaches are typically based on object- or task-specific affordances, but their ability to generalize to novel scenarios is limited. To address this gap, we present AFT-Handover, a framework that integrates large language model (LLM)-driven affordance reasoning with efficient texture-based affordance transfer to achieve zero-shot, generalizable TOH. Given a novel object-task pair, the method retrieves a proxy exemplar from a database, establishes part-level correspondences via LLM reasoning, and texturizes affordances for feature-based point cloud transfer. We evaluate AFT-Handover across diverse task-object pairs, showing improved handover success rates and stronger generalization compared to baselines. In a comparative user study, our framework is significantly preferred over the current state-of-the-art, effectively reducing human regrasping before tool use. Finally, we demonstrate TOH on legged manipulators, highlighting the potential of our framework for real-world robot-human handovers.
Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is that the models exhibit limited zero-shot capability, which hampers their ability to generalize effectively to unseen scenarios. In this work, we propose GeneralVLA (Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning), a hierarchical vision-language-action (VLA) model that can be more effective in utilizing the generalization of foundation models, enabling zero-shot manipulation and automatically generating data for robotics. In particular, we study a class of hierarchical VLA model where the high-level ASM (Affordance Segmentation Module) is finetuned to perceive image keypoint affordances of the scene; the mid-level 3DAgent carries out task understanding, skill knowledge, and trajectory planning to produce a 3D path indicating the desired robot end-effector trajectory. The intermediate 3D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Compared to alternative approaches, our method requires no real-world robotic data collection or human demonstration, making it much more scalable to diverse tasks and viewpoints. Empirically, GeneralVLA successfully generates trajectories for 14 tasks, significantly outperforming state-of-the-art methods such as VoxPoser. The generated demonstrations can train more robust behavior cloning policies than training with human demonstrations or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe GeneralVLA can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Code: https://github.com/AIGeeksGroup/GeneralVLA. Website: https://aigeeksgroup.github.io/GeneralVLA.