Referring Video Object Segmentation (RVOS) aims to segment objects in videos based on textual queries. Current methods mainly rely on large-scale supervised fine-tuning (SFT) of Multi-modal Large Language Models (MLLMs). However, this paradigm suffers from heavy data dependence and limited scalability against the rapid evolution of MLLMs. Although recent zero-shot approaches offer a flexible alternative, their performance remains significantly behind SFT-based methods, due to the straightforward workflow designs. To address these limitations, we propose \textbf{Refer-Agent}, a collaborative multi-agent system with alternating reasoning-reflection mechanisms. This system decomposes RVOS into step-by-step reasoning process. During reasoning, we introduce a Coarse-to-Fine frame selection strategy to ensure the frame diversity and textual relevance, along with a Dynamic Focus Layout that adaptively adjusts the agent's visual focus. Furthermore, we propose a Chain-of-Reflection mechanism, which employs a Questioner-Responder pair to generate a self-reflection chain, enabling the system to verify intermediate results and generates feedback for next-round reasoning refinement. Extensive experiments on five challenging benchmarks demonstrate that Refer-Agent significantly outperforms state-of-the-art methods, including both SFT-based models and zero-shot approaches. Moreover, Refer-Agent is flexible and enables fast integration of new MLLMs without any additional fine-tuning costs. Code will be released.
Weakly supervised temporal video grounding aims to localize query-relevant segments in untrimmed videos using only video-sentence pairs, without requiring ground-truth segment annotations that specify exact temporal boundaries. Recent approaches tackle this task by utilizing Gaussian-based temporal proposals to represent query-relevant segments. However, their inference strategies rely on heuristic mappings from Gaussian parameters to segment boundaries, resulting in suboptimal localization performance. To address this issue, we propose Gaussian Boundary Optimization (GBO), a novel inference framework that predicts segment boundaries by solving a principled optimization problem that balances proposal coverage and segment compactness. We derive a closed-form solution for this problem and rigorously analyze the optimality conditions under varying penalty regimes. Beyond its theoretical foundations, GBO offers several practical advantages: it is training-free and compatible with both single-Gaussian and mixture-based proposal architectures. Our experiments show that GBO significantly improves localization, achieving state-of-the-art results across standard benchmarks. Extensive experiments demonstrate the efficiency and generalizability of GBO across various proposal schemes. The code is available at \href{https://github.com/sunoh-kim/gbo}{https://github.com/sunoh-kim/gbo}.
Semantic segmentation networks require large amounts of pixel-level annotated data, which are costly to obtain for real-world images. Computer graphics engines can generate synthetic images alongside their ground-truth annotations. However, models trained on such images can perform poorly on real images due to the domain gap between real and synthetic images. Style transfer methods can reduce this difference by applying a realistic style to synthetic images. Choosing effective data transformations and their sequence is difficult due to the large combinatorial search space of style transfer operators. Using multi-objective genetic algorithms, we optimize pipelines to balance structural coherence and style similarity to target domains. We study the use of paired-image metrics on individual image samples during evolution to enable rapid pipeline evaluation, as opposed to standard distributional metrics that require the generation of many images. After optimization, we evaluate the resulting Pareto front using distributional metrics and segmentation performance. We apply this approach to standard datasets in synthetic-to-real domain adaptation: from the video game GTA5 to real image datasets Cityscapes and ACDC, focusing on adverse conditions. Results demonstrate that evolutionary algorithms can propose diverse augmentation pipelines adapted to different objectives. The contribution of this work is the formulation of style transfer as a sequencing problem suitable for evolutionary optimization and the study of efficient metrics that enable feasible search in this space. The source code is available at: https://github.com/echigot/MOOSS.
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding, which has paved the way for their expansion into video LLMs (Vid-LLMs) to analyze video data. However, current Vid-LLMs struggle to simultaneously retain high-quality frame-level semantic information (i.e., a sufficient number of tokens per frame) and comprehensive video-level temporal information (i.e., an adequate number of sampled frames per video). This limitation hinders the advancement of Vid-LLMs towards fine-grained video understanding. To address this issue, we introduce the SlowFocus mechanism, which significantly enhances the equivalent sampling frequency without compromising the quality of frame-level visual tokens. SlowFocus begins by identifying the query-related temporal segment based on the posed question, then performs dense sampling on this segment to extract local high-frequency features. A multi-frequency mixing attention module is further leveraged to aggregate these local high-frequency details with global low-frequency contexts for enhanced temporal comprehension. Additionally, to tailor Vid-LLMs to this innovative mechanism, we introduce a set of training strategies aimed at bolstering both temporal grounding and detailed temporal reasoning capabilities. Furthermore, we establish FineAction-CGR, a benchmark specifically devised to assess the ability of Vid-LLMs to process fine-grained temporal understanding tasks. Comprehensive experiments demonstrate the superiority of our mechanism across both existing public video understanding benchmarks and our proposed FineAction-CGR.
We propose MLV-Edit, a training-free, flow-based framework that address the unique challenges of minute-level video editing. While existing techniques excel in short-form video manipulation, scaling them to long-duration videos remains challenging due to prohibitive computational overhead and the difficulty of maintaining global temporal consistency across thousands of frames. To address this, MLV-Edit employs a divide-and-conquer strategy for segment-wise editing, facilitated by two core modules: Velocity Blend rectifies motion inconsistencies at segment boundaries by aligning the flow fields of adjacent chunks, eliminating flickering and boundary artifacts commonly observed in fragmented video processing; and Attention Sink anchors local segment features to global reference frames, effectively suppressing cumulative structural drift. Extensive quantitative and qualitative experiments demonstrate that MLV-Edit consistently outperforms state-of-the-art methods in terms of temporal stability and semantic fidelity.
Latent Video Diffusion Models (LVDMs) rely on Variational Autoencoders (VAEs) to compress videos into compact latent representations. For continuous Variational Autoencoders (VAEs), achieving higher compression rates is desirable; yet, the efficiency notably declines when extra sampling layers are added without expanding the dimensions of hidden channels. In this paper, we present a technique to convert fixed compression rate VAEs into models that support multi-level temporal compression, providing a straightforward and minimal fine-tuning approach to counteract performance decline at elevated compression rates.Moreover, we examine how varying compression levels impact model performance over video segments with diverse characteristics, offering empirical evidence on the effectiveness of our proposed approach. We also investigate the integration of our multi-level temporal compression VAE with diffusion-based generative models, DiT, highlighting successful concurrent training and compatibility within these frameworks. This investigation illustrates the potential uses of multi-level temporal compression.
We present LongVPO, a novel two-stage Direct Preference Optimization framework that enables short-context vision-language models to robustly understand ultra-long videos without any long-video annotations. In Stage 1, we synthesize preference triples by anchoring questions to individual short clips, interleaving them with distractors, and applying visual-similarity and question-specificity filtering to mitigate positional bias and ensure unambiguous supervision. We also approximate the reference model's scoring over long contexts by evaluating only the anchor clip, reducing computational overhead. In Stage 2, we employ a recursive captioning pipeline on long videos to generate scene-level metadata, then use a large language model to craft multi-segment reasoning queries and dispreferred responses, aligning the model's preferences through multi-segment reasoning tasks. With only 16K synthetic examples and no costly human labels, LongVPO outperforms the state-of-the-art open-source models on multiple long-video benchmarks, while maintaining strong short-video performance (e.g., on MVBench), offering a scalable paradigm for efficient long-form video understanding.
Latent Action Models (LAMs) learn to extract action-relevant representations solely from raw observations, enabling reinforcement learning from unlabelled videos and significantly scaling available training data. However, LAMs face a critical challenge in disentangling action-relevant features from action-correlated noise (e.g., background motion). Failing to filter these distractors causes LAMs to capture spurious correlations and build sub-optimal latent action spaces. In this paper, we introduce MaskLAM -- a lightweight modification to LAM training to mitigate this issue by incorporating visual agent segmentation. MaskLAM utilises segmentation masks from pretrained foundation models to weight the LAM reconstruction loss, thereby prioritising salient information over background elements while requiring no architectural modifications. We demonstrate the effectiveness of our method on continuous-control MuJoCo tasks, modified with action-correlated background noise. Our approach yields up to a 4x increase in accrued rewards compared to standard baselines and a 3x improvement in the latent action quality, as evidenced by linear probe evaluation.
While sequential reasoning enhances the capability of Vision-Language Models (VLMs) to execute complex multimodal tasks, their reliability in grounding these reasoning chains within actual visual evidence remains insufficiently explored. We introduce LogicGaze, a novel benchmark framework designed to rigorously interrogate whether VLMs can validate sequential causal chains against visual inputs, specifically targeting the pervasive issue of hallucination. Curated from 40,000 video segments from ShareGPT4Video and a subset of Flickr30k imagery, LogicGaze integrates causal sequences with visually contradictory yet linguistically plausible perturbations, compelling models to verify the authenticity of each reasoning step. Our tripartite evaluation protocol - Causal Validation, Grounded Narrative Synthesis, and Perturbation Rejection - exposes significant vulnerabilities in state-of-the-art VLMs such as Qwen2.5-VL-72B. LogicGaze advocates for robust, trustworthy multimodal reasoning, with all resources publicly available in an anonymized repository.
This work presents a mapless global navigation approach for outdoor applications. It combines the exploratory capacity of conditional variational autoencoders (CVAEs) to generate trajectories and the semantic segmentation capabilities of a lightweight visual language model (VLM) to select the trajectory to execute. Open-vocabulary segmentation is used to score and select the generated trajectories based on natural language, and a state-of-the-art local planner executes velocity commands. One of the key features of the proposed approach is its ability to generate a large variability of trajectories and to select them and navigate in real-time. The approach was validated through real-world outdoor navigation experiments, achieving superior performance compared to state-of-the-art methods. A video showing an experimental run of the system can be found in https://www.youtube.com/watch?v=i3R5ey5O2yk.