Abstract:Diffusion based approaches to long form text generation suffer from prohibitive computational cost and memory overhead as sequence length increases. We introduce SA-DiffuSeq, a diffusion framework that integrates sparse attention to fundamentally improve scalability for long document modeling. By selectively allocating attention within the diffusion process, SA-DiffuSeq significantly reduces computational complexity while maintaining semantic coherence and generation quality. A key component of our method is a soft absorbing state tailored to sparse attention dynamics, which stabilizes diffusion trajectories and accelerates sequence reconstruction. This design improves sampling efficiency and enhances precision in long range dependency modeling. Extensive experiments demonstrate that SA-DiffuSeq consistently surpasses state of the art diffusion baselines in both training efficiency and sampling speed, with especially strong gains on extended sequences. These properties make SA-DiffuSeq well suited for demanding long form applications such as scientific writing, large scale code generation, and multi turn long context dialogue. Overall, our results indicate that incorporating structured sparsity into diffusion models is a promising direction for efficient and expressive long text generation.
Abstract:We present MoE-DiffuSeq, a mixture of experts based framework for enhancing diffusion models in long document generation. Existing diffusion based text generation models, such as DiffuSeq, suffer from high computational cost and memory overhead when applied to extended sequences. To address these challenges, MoE-DiffuSeq integrates sparse attention with a mixture of experts architecture, enabling efficient and scalable long sequence modeling. Our approach introduces a customized sparse attention mechanism designed to reduce computational complexity while preserving text quality and coherence. In addition, we incorporate a soft absorbing state within the diffusion process to accelerate sequence reconstruction and improve generation precision. Extensive experiments demonstrate that MoE-DiffuSeq significantly improves training efficiency and sampling speed compared to existing diffusion models. These advantages are particularly effective for long document scenarios, including scientific article generation, code repository modeling, and long form dialogue generation. Benchmark results further show that MoE-DiffuSeq improves efficiency, speed, accuracy, and expressiveness, advancing the practical applicability of diffusion models for high quality long form text generation.
Abstract:Suicidal thoughts and behaviors are increasingly recognized as a critical societal concern, highlighting the urgent need for effective tools to enable early detection of suicidal risk. In this work, we develop robust machine learning models that leverage Reddit posts to automatically classify them into four distinct levels of suicide risk severity. We frame this as a multi-class classification task and propose a RoBERTa-TF-IDF-PCA Hybrid model, integrating the deep contextual embeddings from Robustly Optimized BERT Approach (RoBERTa), a state-of-the-art deep learning transformer model, with the statistical term-weighting of TF-IDF, further compressed with PCA, to boost the accuracy and reliability of suicide risk assessment. To address data imbalance and overfitting, we explore various data resampling techniques and data augmentation strategies to enhance model generalization. Additionally, we compare our model's performance against that of using RoBERTa only, the BERT model and other traditional machine learning classifiers. Experimental results demonstrate that the hybrid model can achieve improved performance, giving a best weighted $F_{1}$ score of 0.7512.