Unsupervised video object segmentation is the process of segmenting objects in videos without using any labeled data.
Proficiency in microanastomosis is a critical surgical skill in neurosurgery, where the ability to precisely manipulate fine instruments is crucial to successful outcomes. These procedures require sustained attention, coordinated hand movements, and highly refined motor skills, underscoring the need for objective and systematic methods to evaluate and enhance microsurgical training. Conventional assessment approaches typically rely on expert raters supervising the procedures or reviewing surgical videos, which is an inherently subjective process prone to inter-rater variability, inconsistency, and significant time investment. These limitations highlight the necessity for automated and scalable solutions. To address this challenge, we introduce a novel AI-driven framework for automated action segmentation and performance assessment in microanastomosis procedures, designed to operate efficiently on edge computing platforms. The proposed system comprises three main components: (1) an object tip tracking and localization module based on YOLO and DeepSORT; (2) an action segmentation module leveraging self-similarity matrix for action boundary detection and unsupervised clustering; and (3) a supervised classification module designed to evaluate surgical gesture proficiency. Experimental validation on a dataset of 58 expert-rated microanastomosis videos demonstrates the effectiveness of our approach, achieving a frame-level action segmentation accuracy of 92.4% and an overall skill classification accuracy of 85.5% in replicating expert evaluations. These findings demonstrate the potential of the proposed method to provide objective, real-time feedback in microsurgical education, thereby enabling more standardized, data-driven training protocols and advancing competency assessment in high-stakes surgical environments.
In recent years, the state-of-the-art in unsupervised video instance segmentation has heavily relied on synthetic video data, generated from object-centric image datasets such as ImageNet. However, video synthesis by artificially shifting and scaling image instance masks fails to accurately model realistic motion in videos, such as perspective changes, movement by parts of one or multiple instances, or camera motion. To tackle this issue, we propose an unsupervised video instance segmentation model trained exclusively on real video data. We start from unsupervised instance segmentation masks on individual video frames. However, these single-frame segmentations exhibit temporal noise and their quality varies through the video. Therefore, we establish temporal coherence by identifying high-quality keymasks in the video by leveraging deep motion priors. The sparse keymask pseudo-annotations are then used to train a segmentation model for implicit mask propagation, for which we propose a Sparse-To-Dense Distillation approach aided by a Temporal DropLoss. After training the final model on the resulting dense labelset, our approach outperforms the current state-of-the-art across various benchmarks.




Monitoring critically endangered western lowland gorillas is currently hampered by the immense manual effort required to re-identify individuals from vast archives of camera trap footage. The primary obstacle to automating this process has been the lack of large-scale, "in-the-wild" video datasets suitable for training robust deep learning models. To address this gap, we introduce a comprehensive benchmark with three novel datasets: Gorilla-SPAC-Wild, the largest video dataset for wild primate re-identification to date; Gorilla-Berlin-Zoo, for assessing cross-domain re-identification generalization; and Gorilla-SPAC-MoT, for evaluating multi-object tracking in camera trap footage. Building on these datasets, we present GorillaWatch, an end-to-end pipeline integrating detection, tracking, and re-identification. To exploit temporal information, we introduce a multi-frame self-supervised pretraining strategy that leverages consistency in tracklets to learn domain-specific features without manual labels. To ensure scientific validity, a differentiable adaptation of AttnLRP verifies that our model relies on discriminative biometric traits rather than background correlations. Extensive benchmarking subsequently demonstrates that aggregating features from large-scale image backbones outperforms specialized video architectures. Finally, we address unsupervised population counting by integrating spatiotemporal constraints into standard clustering to mitigate over-segmentation. We publicly release all code and datasets to facilitate scalable, non-invasive monitoring of endangered species
Dense and versatile image representations underpin the success of virtually all computer vision applications. However, state-of-the-art networks, such as transformers, produce low-resolution feature grids, which are suboptimal for dense prediction tasks. To address this limitation, we present FlowFeat, a high-resolution and multi-task feature representation. The key ingredient behind FlowFeat is a novel distillation technique that embeds a distribution of plausible apparent motions, or motion profiles. By leveraging optical flow networks and diverse video data, we develop an effective self-supervised training framework that statistically approximates the apparent motion. With its remarkable level of spatial detail, FlowFeat encodes a compelling degree of geometric and semantic cues while exhibiting high temporal consistency. Empirically, FlowFeat significantly enhances the representational power of five state-of-the-art encoders and alternative upsampling strategies across three dense tasks: video object segmentation, monocular depth estimation and semantic segmentation. Training FlowFeat is computationally inexpensive and robust to inaccurate flow estimation, remaining highly effective even when using unsupervised flow networks. Our work takes a step forward towards reliable and versatile dense image representations.
Analyzing octopuses in their natural habitats is challenging due to their camouflage capability, rapid changes in skin texture and color, non-rigid body deformations, and frequent occlusions, all of which are compounded by variable underwater lighting and turbidity. Addressing the lack of large-scale annotated datasets, this paper introduces HideAndSeg, a novel, minimally supervised AI-based tool for segmenting videos of octopuses. It establishes a quantitative baseline for this task. HideAndSeg integrates SAM2 with a custom-trained YOLOv11 object detector. First, the user provides point coordinates to generate the initial segmentation masks with SAM2. These masks serve as training data for the YOLO model. After that, our approach fully automates the pipeline by providing a bounding box prompt to SAM2, eliminating the need for further manual intervention. We introduce two unsupervised metrics - temporal consistency $DICE_t$ and new component count $NC_t$ - to quantitatively evaluate segmentation quality and guide mask refinement in the absence of ground-truth data, i.e., real-world information that serves to train, validate, and test AI models. Results show that HideAndSeg achieves satisfactory performance, reducing segmentation noise compared to the manually prompted approach. Our method can re-identify and segment the octopus even after periods of complete occlusion in natural environments, a scenario in which the manually prompted model fails. By reducing the need for manual analysis in real-world scenarios, this work provides a practical tool that paves the way for more efficient behavioral studies of wild cephalopods.




Unsupervised Video Object Segmentation (UVOS) aims to predict pixel-level masks for the most salient objects in videos without any prior annotations. While memory mechanisms have been proven critical in various video segmentation paradigms, their application in UVOS yield only marginal performance gains despite sophisticated design. Our analysis reveals a simple but fundamental flaw in existing methods: over-reliance on memorizing high-level semantic features. UVOS inherently suffers from the deficiency of lacking fine-grained information due to the absence of pixel-level prior knowledge. Consequently, memory design relying solely on high-level features, which predominantly capture abstract semantic cues, is insufficient to generate precise predictions. To resolve this fundamental issue, we propose a novel hierarchical memory architecture to incorporate both shallow- and high-level features for memory, which leverages the complementary benefits of pixel and semantic information. Furthermore, to balance the simultaneous utilization of the pixel and semantic memory features, we propose a heterogeneous interaction mechanism to perform pixel-semantic mutual interactions, which explicitly considers their inherent feature discrepancies. Through the design of Pixel-guided Local Alignment Module (PLAM) and Semantic-guided Global Integration Module (SGIM), we achieve delicate integration of the fine-grained details in shallow-level memory and the semantic representations in high-level memory. Our Hierarchical Memory with Heterogeneous Interaction Network (HMHI-Net) consistently achieves state-of-the-art performance across all UVOS and video saliency detection benchmarks. Moreover, HMHI-Net consistently exhibits high performance across different backbones, further demonstrating its superiority and robustness. Project page: https://github.com/ZhengxyFlow/HMHI-Net .




Recent unsupervised video object segmentation (UVOS) methods predominantly adopt the motion-appearance paradigm. Mainstream motion-appearance approaches use either the two-encoder structure to separately encode motion and appearance features, or the single-encoder structure for joint encoding. However, these methods fail to properly balance the motion-appearance relationship. Consequently, even with complex fusion modules for motion-appearance integration, the extracted suboptimal features degrade the models' overall performance. Moreover, the quality of optical flow varies across scenarios, making it insufficient to rely solely on optical flow to achieve high-quality segmentation results. To address these challenges, we propose the Intrinsic Saliency guided Trunk-Collateral Net}work (ISTC-Net), which better balances the motion-appearance relationship and incorporates model's intrinsic saliency information to enhance segmentation performance. Specifically, considering that optical flow maps are derived from RGB images, they share both commonalities and differences. We propose a novel Trunk-Collateral structure. The shared trunk backbone captures the motion-appearance commonality, while the collateral branch learns the uniqueness of motion features. Furthermore, an Intrinsic Saliency guided Refinement Module (ISRM) is devised to efficiently leverage the model's intrinsic saliency information to refine high-level features, and provide pixel-level guidance for motion-appearance fusion, thereby enhancing performance without additional input. Experimental results show that ISTC-Net achieved state-of-the-art performance on three UVOS datasets (89.2% J&F on DAVIS-16, 76% J on YouTube-Objects, 86.4% J on FBMS) and four standard video salient object detection (VSOD) benchmarks with the notable increase, demonstrating its effectiveness and superiority over previous methods.
Cell boundary information is crucial for analyzing cell behaviors from time-lapse microscopy videos. Existing supervised cell segmentation tools, such as ImageJ, require tuning various parameters and rely on restrictive assumptions about the shape of the objects. While recent supervised segmentation tools based on convolutional neural networks enhance accuracy, they depend on high-quality labelled images, making them unsuitable for segmenting new types of objects not in the database. We developed a novel unsupervised cell segmentation algorithm based on fast Gaussian processes for noisy microscopy images without the need for parameter tuning or restrictive assumptions about the shape of the object. We derived robust thresholding criteria adaptive for heterogeneous images containing distinct brightness at different parts to separate objects from the background, and employed watershed segmentation to distinguish touching cell objects. Both simulated studies and real-data analysis of large microscopy images demonstrate the scalability and accuracy of our approach compared with the alternatives.




We introduce Generalized Test-Time Augmentation (GTTA), a highly effective method for improving the performance of a trained model, which unlike other existing Test-Time Augmentation approaches from the literature is general enough to be used off-the-shelf for many vision and non-vision tasks, such as classification, regression, image segmentation and object detection. By applying a new general data transformation, that randomly perturbs multiple times the PCA subspace projection of a test input, GTTA forms robust ensembles at test time in which, due to sound statistical properties, the structural and systematic noises in the initial input data is filtered out and final estimator errors are reduced. Different from other existing methods, we also propose a final self-supervised learning stage in which the ensemble output, acting as an unsupervised teacher, is used to train the initial single student model, thus reducing significantly the test time computational cost, at no loss in accuracy. Our tests and comparisons to strong TTA approaches and SoTA models on various vision and non-vision well-known datasets and tasks, such as image classification and segmentation, speech recognition and house price prediction, validate the generality of the proposed GTTA. Furthermore, we also prove its effectiveness on the more specific real-world task of salmon segmentation and detection in low-visibility underwater videos, for which we introduce DeepSalmon, the largest dataset of its kind in the literature.
Recent advancements in generative models have revolutionized video synthesis and editing. However, the scarcity of diverse, high-quality datasets continues to hinder video-conditioned robotic learning, limiting cross-platform generalization. In this work, we address the challenge of swapping a robotic arm in one video with another: a key step for crossembodiment learning. Unlike previous methods that depend on paired video demonstrations in the same environmental settings, our proposed framework, RoboSwap, operates on unpaired data from diverse environments, alleviating the data collection needs. RoboSwap introduces a novel video editing pipeline integrating both GANs and diffusion models, combining their isolated advantages. Specifically, we segment robotic arms from their backgrounds and train an unpaired GAN model to translate one robotic arm to another. The translated arm is blended with the original video background and refined with a diffusion model to enhance coherence, motion realism and object interaction. The GAN and diffusion stages are trained independently. Our experiments demonstrate that RoboSwap outperforms state-of-the-art video and image editing models on three benchmarks in terms of both structural coherence and motion consistency, thereby offering a robust solution for generating reliable, cross-embodiment data in robotic learning.