Abstract:Cell boundary information is crucial for analyzing cell behaviors from time-lapse microscopy videos. Existing supervised cell segmentation tools, such as ImageJ, require tuning various parameters and rely on restrictive assumptions about the shape of the objects. While recent supervised segmentation tools based on convolutional neural networks enhance accuracy, they depend on high-quality labelled images, making them unsuitable for segmenting new types of objects not in the database. We developed a novel unsupervised cell segmentation algorithm based on fast Gaussian processes for noisy microscopy images without the need for parameter tuning or restrictive assumptions about the shape of the object. We derived robust thresholding criteria adaptive for heterogeneous images containing distinct brightness at different parts to separate objects from the background, and employed watershed segmentation to distinguish touching cell objects. Both simulated studies and real-data analysis of large microscopy images demonstrate the scalability and accuracy of our approach compared with the alternatives.
Abstract:In this work, we develop a scalable approach for a flexible latent factor model for high-dimensional dynamical systems. Each latent factor process has its own correlation and variance parameters, and the orthogonal factor loading matrix can be either fixed or estimated. We utilize an orthogonal factor loading matrix that avoids computing the inversion of the posterior covariance matrix at each time of the Kalman filter, and derive closed-form expressions in an expectation-maximization algorithm for parameter estimation, which substantially reduces the computational complexity without approximation. Our study is motivated by inversely estimating slow slip events from geodetic data, such as continuous GPS measurements. Extensive simulated studies illustrate higher accuracy and scalability of our approach compared to alternatives. By applying our method to geodetic measurements in the Cascadia region, our estimated slip better agrees with independently measured seismic data of tremor events. The substantial acceleration from our method enables the use of massive noisy data for geological hazard quantification and other applications.
Abstract:Recent years have seen a significant increase in the use of machine intelligence for predicting electronic structure, molecular force fields, and the physicochemical properties of various condensed systems. However, substantial challenges remain in developing a comprehensive framework capable of handling a wide range of atomic compositions and thermodynamic conditions. This perspective discusses potential future developments in liquid-state theories leveraging on recent advancements of functional machine learning. By harnessing the strengths of theoretical analysis and machine learning techniques including surrogate models, dimension reduction and uncertainty quantification, we envision that liquid-state theories will gain significant improvements in accuracy, scalability and computational efficiency, enabling their broader applications across diverse materials and chemical systems.