Topic:Time Series Forecasting
What is Time Series Forecasting? Time series forecasting is the task of fitting a model to historical, time-stamped data in order to predict future values. Traditional approaches include moving average, exponential smoothing, and ARIMA, though models as various as RNNs, Transformers, or XGBoost can also be applied. The most popular benchmark is the ETTh1 dataset. Models are typically evaluated using the Mean Square Error (MSE) or Root Mean Square Error (RMSE).
Papers and Code
May 05, 2025
Abstract:The Transformer model has shown strong performance in multivariate time series forecasting by leveraging channel-wise self-attention. However, this approach lacks temporal constraints when computing temporal features and does not utilize cumulative historical series effectively.To address these limitations, we propose the Structured Channel-wise Transformer with Cumulative Historical state (SCFormer). SCFormer introduces temporal constraints to all linear transformations, including the query, key, and value matrices, as well as the fully connected layers within the Transformer. Additionally, SCFormer employs High-order Polynomial Projection Operators (HiPPO) to deal with cumulative historical time series, allowing the model to incorporate information beyond the look-back window during prediction. Extensive experiments on multiple real-world datasets demonstrate that SCFormer significantly outperforms mainstream baselines, highlighting its effectiveness in enhancing time series forecasting. The code is publicly available at https://github.com/ShiweiGuo1995/SCFormer
Via

May 05, 2025
Abstract:Addressing the computational challenges inherent in training large-scale deep neural networks remains a critical endeavor in contemporary machine learning research. While previous efforts have focused on enhancing training efficiency through techniques such as gradient descent with momentum, learning rate scheduling, and weight regularization, the demand for further innovation continues to burgeon as model sizes keep expanding. In this study, we introduce a novel framework which diverges from conventional approaches by leveraging long-term time series forecasting techniques. Our method capitalizes solely on initial and final weight values, offering a streamlined alternative for complex model architectures. We also introduce a novel regularizer that is tailored to enhance the forecasting performance of our approach. Empirical evaluations conducted on synthetic weight sequences and real-world deep learning architectures, including the prominent large language model DistilBERT, demonstrate the superiority of our method in terms of forecasting accuracy and computational efficiency. Notably, our framework showcases improved performance while requiring minimal additional computational overhead, thus presenting a promising avenue for accelerating the training process across diverse tasks and architectures.
* Accepted to DASFAA '25
Via

May 04, 2025
Abstract:Multivariate long-term time series forecasting is critical for applications such as weather prediction, and traffic analysis. In addition, the implementation of Transformer variants has improved prediction accuracy. Following these variants, different input data process approaches also enhanced the field, such as tokenization techniques including point-wise, channel-wise, and patch-wise tokenization. However, previous studies still have limitations in time complexity, computational resources, and cross-dimensional interactions. To address these limitations, we introduce a novel CNN Autoencoder-based Score Attention mechanism (CASA), which can be introduced in diverse Transformers model-agnosticically by reducing memory and leading to improvement in model performance. Experiments on eight real-world datasets validate that CASA decreases computational resources by up to 77.7%, accelerates inference by 44.0%, and achieves state-of-the-art performance, ranking first in 87.5% of evaluated metrics.
Via

May 04, 2025
Abstract:Multivariate time series forecasting (MTSF) endeavors to predict future observations given historical data, playing a crucial role in time series data management systems. With advancements in large language models (LLMs), recent studies employ textual prompt tuning to infuse the knowledge of LLMs into MTSF. However, the deployment of LLMs often suffers from low efficiency during the inference phase. To address this problem, we introduce TimeKD, an efficient MTSF framework that leverages the calibrated language models and privileged knowledge distillation. TimeKD aims to generate high-quality future representations from the proposed cross-modality teacher model and cultivate an effective student model. The cross-modality teacher model adopts calibrated language models (CLMs) with ground truth prompts, motivated by the paradigm of Learning Under Privileged Information (LUPI). In addition, we design a subtractive cross attention (SCA) mechanism to refine these representations. To cultivate an effective student model, we propose an innovative privileged knowledge distillation (PKD) mechanism including correlation and feature distillation. PKD enables the student to replicate the teacher's behavior while minimizing their output discrepancy. Extensive experiments on real data offer insight into the effectiveness, efficiency, and scalability of the proposed TimeKD.
* Accepted by ICDE 2025
Via

May 04, 2025
Abstract:Since the advent of the ``Neural Ordinary Differential Equation (Neural ODE)'' paper, learning ODEs with deep learning has been applied to system identification, time-series forecasting, and related areas. Exploiting the diffeomorphic nature of ODE solution maps, neural ODEs has also enabled their use in generative modeling. Despite the rich potential to incorporate various kinds of physical information, training Neural ODEs remains challenging in practice. This study demonstrates, through the simplest one-dimensional linear model, why training Neural ODEs is difficult. We then propose a new stabilization method and provide an analytical convergence analysis. The insights and techniques presented here serve as a concise tutorial for researchers beginning work on Neural ODEs.
* Under review
Via

May 02, 2025
Abstract:Most existing single-modal time series models rely solely on numerical series, which suffer from the limitations imposed by insufficient information. Recent studies have revealed that multimodal models can address the core issue by integrating textual information. However, these models focus on either historical or future textual information, overlooking the unique contributions each plays in time series forecasting. Besides, these models fail to grasp the intricate relationships between textual and time series data, constrained by their moderate capacity for multimodal comprehension. To tackle these challenges, we propose Dual-Forecaster, a pioneering multimodal time series model that combines both descriptively historical textual information and predictive textual insights, leveraging advanced multimodal comprehension capability empowered by three well-designed cross-modality alignment techniques. Our comprehensive evaluations on fifteen multimodal time series datasets demonstrate that Dual-Forecaster is a distinctly effective multimodal time series model that outperforms or is comparable to other state-of-the-art models, highlighting the superiority of integrating textual information for time series forecasting. This work opens new avenues in the integration of textual information with numerical time series data for multimodal time series analysis.
Via

May 02, 2025
Abstract:Accurate time series forecasting is essential in many real-time applications that demand both high predictive accuracy and computational efficiency. This study provides an empirical comparison between a Polynomial Classifier and a Radial Basis Function Neural Network (RBFNN) across four real-world time series datasets (weather conditions, gold prices, crude oil prices, and beer production volumes) that cover both seasonal and nonseasonal patterns. Model performance is evaluated by forecasting accuracy (using Mean Absolute Error, Root Mean Squared Error, and Coefficient of Variation of Root Mean Squared Error) and computational time to assess each model's viability for real time forecasting. The results show that the PC yields more accurate and faster forecasts for non seasonal series, whereas the RBFNN performs better on series with pronounced seasonal patterns. From an interpretability standpoint, the polynomial model offers a simpler, more transparent structure (in contrast to the black box nature of neural network), which is advantageous for understanding and trust in real time decision making. The performance differences between PC and RBFNN are statistically significant, as confirmed by paired t tests and Wilcoxon signed rank tests. These findings provide practical guidance for model selection in time series forecasting, indicating that PC may be preferable for quick, interpretable forecasts in non-seasonal contexts, whereas RBFNN is superior for capturing complex seasonal behaviors
Via

May 02, 2025
Abstract:The Everglades play a crucial role in flood and drought regulation, water resource planning, and ecosystem management in the surrounding regions. However, traditional physics-based and statistical methods for predicting water levels often face significant challenges, including high computational costs and limited adaptability to diverse or unforeseen conditions. Recent advancements in large time series models have demonstrated the potential to address these limitations, with state-of-the-art deep learning and foundation models achieving remarkable success in time series forecasting across various domains. Despite this progress, their application to critical environmental systems, such as the Everglades, remains underexplored. In this study, we fill the gap by investigating twelve task-specific models and five time series foundation models across six categories for a real-world application focused on water level prediction in the Everglades. Our primary results show that the foundation model, Chronos, significantly outperforms all other models while the remaining foundation models exhibit relatively poor performance. Moreover, the performance of task-specific models varies with the model architectures. Lastly, we discuss the possible reasons for the varying performance of models.
Via

May 01, 2025
Abstract:Time series forecasting holds significant importance across various industries, including finance, transportation, energy, healthcare, and climate. Despite the widespread use of linear networks due to their low computational cost and effectiveness in modeling temporal dependencies, most existing research has concentrated on regularly sampled and fully observed multivariate time series. However, in practice, we frequently encounter irregular multivariate time series characterized by variable sampling intervals and missing values. The inherent intra-series inconsistency and inter-series asynchrony in such data hinder effective modeling and forecasting with traditional linear networks relying on static weights. To tackle these challenges, this paper introduces a novel model named AiT. AiT utilizes an adaptive linear network capable of dynamically adjusting weights according to observation time points to address intra-series inconsistency, thereby enhancing the accuracy of temporal dependencies modeling. Furthermore, by incorporating the Transformer module on variable semantics embeddings, AiT efficiently captures variable correlations, avoiding the challenge of inter-series asynchrony. Comprehensive experiments across four benchmark datasets demonstrate the superiority of AiT, improving prediction accuracy by 11% and decreasing runtime by 52% compared to existing state-of-the-art methods.
Via

May 01, 2025
Abstract:Multivariate time series forecasting enables the prediction of future states by leveraging historical data, thereby facilitating decision-making processes. Each data node in a multivariate time series encompasses a sequence of multiple dimensions. These nodes exhibit interdependent relationships, forming a graph structure. While existing prediction methods often assume a fixed graph structure, many real-world scenarios involve dynamic graph structures. Moreover, interactions among time series observed at different time scales vary significantly. To enhance prediction accuracy by capturing precise temporal and spatial features, this paper introduces the Temporal Attention Evolutional Graph Convolutional Network (TAEGCN). This novel method not only integrates causal temporal convolution and a multi-head self-attention mechanism to learn temporal features of nodes, but also construct the dynamic graph structure based on these temporal features to keep the consistency of the changing in spatial feature with temporal series. TAEGCN adeptly captures temporal causal relationships and hidden spatial dependencies within the data. Furthermore, TAEGCN incorporates a unified neural network that seamlessly integrates these components to generate final predictions. Experimental results conducted on two public transportation network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of the proposed model.
* 13 pages, 7 figures
Via
