Abstract:Multivariate time series forecasting enables the prediction of future states by leveraging historical data, thereby facilitating decision-making processes. Each data node in a multivariate time series encompasses a sequence of multiple dimensions. These nodes exhibit interdependent relationships, forming a graph structure. While existing prediction methods often assume a fixed graph structure, many real-world scenarios involve dynamic graph structures. Moreover, interactions among time series observed at different time scales vary significantly. To enhance prediction accuracy by capturing precise temporal and spatial features, this paper introduces the Temporal Attention Evolutional Graph Convolutional Network (TAEGCN). This novel method not only integrates causal temporal convolution and a multi-head self-attention mechanism to learn temporal features of nodes, but also construct the dynamic graph structure based on these temporal features to keep the consistency of the changing in spatial feature with temporal series. TAEGCN adeptly captures temporal causal relationships and hidden spatial dependencies within the data. Furthermore, TAEGCN incorporates a unified neural network that seamlessly integrates these components to generate final predictions. Experimental results conducted on two public transportation network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of the proposed model.
Abstract:Gas leaks pose significant risks to human health and the environment. Despite long-standing concerns, there are limited methods that can efficiently and accurately detect and segment leaks due to their concealed appearance and random shapes. In this paper, we propose a Fine-grained Spatial-Temporal Perception (FGSTP) algorithm for gas leak segmentation. FGSTP captures critical motion clues across frames and integrates them with refined object features in an end-to-end network. Specifically, we first construct a correlation volume to capture motion information between consecutive frames. Then, the fine-grained perception progressively refines the object-level features using previous outputs. Finally, a decoder is employed to optimize boundary segmentation. Because there is no highly precise labeled dataset for gas leak segmentation, we manually label a gas leak video dataset, GasVid. Experimental results on GasVid demonstrate that our model excels in segmenting non-rigid objects such as gas leaks, generating the most accurate mask compared to other state-of-the-art (SOTA) models.