In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
Diffusion-based editing models have emerged as a powerful tool for semantic image and video manipulation. However, existing models lack a mechanism for smoothly controlling the intensity of text-guided edits. In standard text-conditioned generation, Classifier-Free Guidance (CFG) impacts prompt adherence, suggesting it as a potential control for edit intensity in editing models. However, we show that scaling CFG in these models does not produce a smooth transition between the input and the edited result. We attribute this behavior to the unconditional prediction, which serves as the guidance origin and dominates the generation at low guidance scales, while representing an arbitrary manipulation of the input content. To enable continuous control, we introduce Adaptive-Origin Guidance (AdaOr), a method that adjusts this standard guidance origin with an identity-conditioned adaptive origin, using an identity instruction corresponding to the identity manipulation. By interpolating this identity prediction with the standard unconditional prediction according to the edit strength, we ensure a continuous transition from the input to the edited result. We evaluate our method on image and video editing tasks, demonstrating that it provides smoother and more consistent control compared to current slider-based editing approaches. Our method incorporates an identity instruction into the standard training framework, enabling fine-grained control at inference time without per-edit procedure or reliance on specialized datasets.
The evolution of biological morphology is critical for understanding the diversity of the natural world, yet traditional analyses often involve subjective biases in the selection and coding of morphological traits. This study employs deep learning techniques, utilising a ResNet34 model capable of recognising over 10,000 bird species, to explore avian morphological evolution. We extract weights from the model's final fully connected (fc) layer and investigate the semantic alignment between the high-dimensional embedding space learned by the model and biological phenotypes. The results demonstrate that the high-dimensional embedding space encodes phenotypic convergence. Subsequently, we assess the morphological disparity among various taxa and evaluate the association between morphological disparity and species richness, demonstrating that species richness is the primary driver of morphospace expansion. Moreover, the disparity-through-time analysis reveals a visual "early burst" after the K-Pg extinction. While mainly aimed at evolutionary analysis, this study also provides insights into the interpretability of Deep Neural Networks. We demonstrate that hierarchical semantic structures (biological taxonomy) emerged in the high-dimensional embedding space despite being trained on flat labels. Furthermore, through adversarial examples, we provide evidence that our model in this task can overcome texture bias and learn holistic shape representations (body plans), challenging the prevailing view that CNNs rely primarily on local textures.
Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
Reasoning Large Language Models (LLMs) enable test-time scaling, with dataset-level accuracy improving as the token budget increases, motivating adaptive reasoning -- spending tokens when they improve reliability and stopping early when additional computation is unlikely to help. However, setting the token budget, as well as the threshold for adaptive reasoning, is a practical challenge that entails a fundamental risk-accuracy trade-off. We re-frame the budget setting problem as risk control, limiting the error rate while minimizing compute. Our framework introduces an upper threshold that stops reasoning when the model is confident (risking incorrect output) and a novel parametric lower threshold that preemptively stops unsolvable instances (risking premature stoppage). Given a target risk and a validation set, we use distribution-free risk control to optimally specify these stopping mechanisms. For scenarios with multiple budget controlling criteria, we incorporate an efficiency loss to select the most computationally efficient exiting mechanism. Empirical results across diverse reasoning tasks and models demonstrate the effectiveness of our risk control approach, demonstrating computational efficiency gains from the lower threshold and ensemble stopping mechanisms while adhering to the user-specified risk target.
Joint base station (BS) association and beam selection in multi-UAV aerial corridors constitutes a challenging radio resource management (RRM) problem. It is driven by high-dimensional action spaces, need for substantial overhead to acquire global channel state information (CSI), rapidly varying propagation channels, and stringent latency requirements. Conventional combinatorial optimization methods, while near-optimal, are computationally prohibitive for real-time operation in such dynamic environments. While learning-based approaches can mitigate computational complexity and CSI overhead, the need for extensive site-specific (SS) datasets for model training remains a key challenge. To address these challenges, we develop a Digital Twin (DT)-enabled two-stage optimization framework that couples physics-based beam gain modeling with DRL for scalable online decision-making. In the first stage, a channel twin (CT) is constructed using a high-fidelity ray-tracing solver with geo-spatial contexts, and network information to capture SS propagation characteristics, and dual annealing algorithm is employed to precompute optimal transmission beam directions. In the second stage, a Multi-Head Proximal Policy Optimization (MH-PPO) agent, equipped with a scalable multi-head actor-critic architecture, is trained on the DT-generated channel dataset to directly map complex channel and beam states to jointly execute UAV-BS-beam association decisions. The proposed PPO agent achieves a 44%-121% improvement over DQN and 249%-807% gain over traditional heuristic based optimization schemes in a dense UAV scenario, while reducing inference latency by several orders of magnitude. These results demonstrate that DT-driven training pipelines can deliver high-performance, low-latency RRM policies tailored to SS deployments suitable for real-time resource management in next-generation aerial corridor networks.
While Open Set Semantic Mapping and 3D Semantic Scene Graphs (3DSSGs) are established paradigms in robotic perception, deploying them effectively to support high-level reasoning in large-scale, real-world environments remains a significant challenge. Most existing approaches decouple perception from representation, treating the scene graph as a derivative layer generated post hoc. This limits both consistency and scalability. In contrast, we propose a mapping architecture where the 3DSSG serves as the foundational backend, acting as the primary knowledge representation for the entire mapping process. Our approach leverages prior work on incremental scene graph prediction to infer and update the graph structure in real-time as the environment is explored. This ensures that the map remains topologically consistent and computationally efficient, even during extended operations in large-scale settings. By maintaining an explicit, spatially grounded representation that supports both flat and hierarchical topologies, we bridge the gap between sub-symbolic raw sensor data and high-level symbolic reasoning. Consequently, this provides a stable, verifiable structure that knowledge-driven frameworks, ranging from knowledge graphs and ontologies to Large Language Models (LLMs), can directly exploit, enabling agents to operate with enhanced interpretability, trustworthiness, and alignment to human concepts.
The scaling of Large Language Models (LLMs) is increasingly limited by data quality. Most methods handle data mixing and sample selection separately, which can break the structure in code corpora. We introduce \textbf{UniGeM}, a framework that unifies mixing and selection by treating data curation as a \textit{manifold approximation} problem without training proxy models or relying on external reference datasets. UniGeM operates hierarchically: \textbf{Macro-Exploration} learns mixing weights with stability-based clustering; \textbf{Micro-Mining} filters high-quality instances by their geometric distribution to ensure logical consistency. Validated by training 8B and 16B MoE models on 100B tokens, UniGeM achieves \textbf{2.0$\times$ data efficiency} over a random baseline and further improves overall performance compared to SOTA methods in reasoning-heavy evaluations and multilingual generalization.
Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
Autonomous inspection of underground infrastructure, such as sewer and culvert systems, is critical to public safety and urban sustainability. Although robotic platforms equipped with visual sensors can efficiently detect structural deficiencies, the automated generation of human-readable summaries from these detections remains a significant challenge, especially on resource-constrained edge devices. This paper presents a novel two-stage pipeline for end-to-end summarization of underground deficiencies, combining our lightweight RAPID-SCAN segmentation model with a fine-tuned Vision-Language Model (VLM) deployed on an edge computing platform. The first stage employs RAPID-SCAN (Resource-Aware Pipeline Inspection and Defect Segmentation using Compact Adaptive Network), achieving 0.834 F1-score with only 0.64M parameters for efficient defect segmentation. The second stage utilizes a fine-tuned Phi-3.5 VLM that generates concise, domain-specific summaries in natural language from the segmentation outputs. We introduce a curated dataset of inspection images with manually verified descriptions for VLM fine-tuning and evaluation. To enable real-time performance, we employ post-training quantization with hardware-specific optimization, achieving significant reductions in model size and inference latency without compromising summarization quality. We deploy and evaluate our complete pipeline on a mobile robotic platform, demonstrating its effectiveness in real-world inspection scenarios. Our results show the potential of edge-deployable integrated AI systems to bridge the gap between automated defect detection and actionable insights for infrastructure maintenance, paving the way for more scalable and autonomous inspection solutions.