Shane
Abstract:In this work, we study the scalability of offline reinforcement learning (RL) algorithms. In principle, a truly scalable offline RL algorithm should be able to solve any given problem, regardless of its complexity, given sufficient data, compute, and model capacity. We investigate if and how current offline RL algorithms match up to this promise on diverse, challenging, previously unsolved tasks, using datasets up to 1000x larger than typical offline RL datasets. We observe that despite scaling up data, many existing offline RL algorithms exhibit poor scaling behavior, saturating well below the maximum performance. We hypothesize that the horizon is the main cause behind the poor scaling of offline RL. We empirically verify this hypothesis through several analysis experiments, showing that long horizons indeed present a fundamental barrier to scaling up offline RL. We then show that various horizon reduction techniques substantially enhance scalability on challenging tasks. Based on our insights, we also introduce a minimal yet scalable method named SHARSA that effectively reduces the horizon. SHARSA achieves the best asymptotic performance and scaling behavior among our evaluation methods, showing that explicitly reducing the horizon unlocks the scalability of offline RL. Code: https://github.com/seohongpark/horizon-reduction
Abstract:Modern reinforcement learning (RL) algorithms have found success by using powerful probabilistic models, such as transformers, energy-based models, and diffusion/flow-based models. To this end, RL researchers often choose to pay the price of accommodating these models into their algorithms -- diffusion models are expressive, but are computationally intensive due to their reliance on solving differential equations, while autoregressive transformer models are scalable but typically require learning discrete representations. Normalizing flows (NFs), by contrast, seem to provide an appealing alternative, as they enable likelihoods and sampling without solving differential equations or autoregressive architectures. However, their potential in RL has received limited attention, partly due to the prevailing belief that normalizing flows lack sufficient expressivity. We show that this is not the case. Building on recent work in NFs, we propose a single NF architecture which integrates seamlessly into RL algorithms, serving as a policy, Q-function, and occupancy measure. Our approach leads to much simpler algorithms, and achieves higher performance in imitation learning, offline, goal conditioned RL and unsupervised RL.
Abstract:Scaling up self-supervised learning has driven breakthroughs in language and vision, yet comparable progress has remained elusive in reinforcement learning (RL). In this paper, we study building blocks for self-supervised RL that unlock substantial improvements in scalability, with network depth serving as a critical factor. Whereas most RL papers in recent years have relied on shallow architectures (around 2 - 5 layers), we demonstrate that increasing the depth up to 1024 layers can significantly boost performance. Our experiments are conducted in an unsupervised goal-conditioned setting, where no demonstrations or rewards are provided, so an agent must explore (from scratch) and learn how to maximize the likelihood of reaching commanded goals. Evaluated on simulated locomotion and manipulation tasks, our approach increases performance by $2\times$ - $50\times$. Increasing the model depth not only increases success rates but also qualitatively changes the behaviors learned.
Abstract:While internet-scale data often comes in pairs (e.g., audio/image, image/text), we often want to perform inferences over modalities unseen together in the training data (e.g., audio/text). Empirically, this can often be addressed by learning multiple contrastive embedding spaces between existing modality pairs, implicitly hoping that unseen modality pairs will end up being aligned. This theoretical paper proves that this hope is well founded, under certain assumptions. Starting with the proper Bayesian approach of integrating out intermediate modalities, we show that directly comparing the representations of data from unpaired modalities can recover the same likelihood ratio. Our analysis builds on prior work on the geometry and probabilistic interpretation of contrastive representations, showing how these representations can answer many of the same inferences as probabilistic graphical models. Our analysis suggests two new ways of using contrastive representations: in settings with pre-trained contrastive models, and for handling language ambiguity in reinforcement learning. Our numerical experiments study the importance of our assumptions and demonstrate these new applications.
Abstract:We study goal-conditioned RL through the lens of generalization, but not in the traditional sense of random augmentations and domain randomization. Rather, we aim to learn goal-directed policies that generalize with respect to the horizon: after training to reach nearby goals (which are easy to learn), these policies should succeed in reaching distant goals (which are quite challenging to learn). In the same way that invariance is closely linked with generalization is other areas of machine learning (e.g., normalization layers make a network invariant to scale, and therefore generalize to inputs of varying scales), we show that this notion of horizon generalization is closely linked with invariance to planning: a policy navigating towards a goal will select the same actions as if it were navigating to a waypoint en route to that goal. Thus, such a policy trained to reach nearby goals should succeed at reaching arbitrarily-distant goals. Our theoretical analysis proves that both horizon generalization and planning invariance are possible, under some assumptions. We present new experimental results and recall findings from prior work in support of our theoretical results. Taken together, our results open the door to studying how techniques for invariance and generalization developed in other areas of machine learning might be adapted to achieve this alluring property.
Abstract:Self-supervised learning has the potential of lifting several of the key challenges in reinforcement learning today, such as exploration, representation learning, and reward design. Recent work (METRA) has effectively argued that moving away from mutual information and instead optimizing a certain Wasserstein distance is important for good performance. In this paper, we argue that the benefits seen in that paper can largely be explained within the existing framework of mutual information skill learning (MISL). Our analysis suggests a new MISL method (contrastive successor features) that retains the excellent performance of METRA with fewer moving parts, and highlights connections between skill learning, contrastive representation learning, and successor features. Finally, through careful ablation studies, we provide further insight into some of the key ingredients for both our method and METRA.
Abstract:Assistive agents should make humans' lives easier. Classically, such assistance is studied through the lens of inverse reinforcement learning, where an assistive agent (e.g., a chatbot, a robot) infers a human's intention and then selects actions to help the human reach that goal. This approach requires inferring intentions, which can be difficult in high-dimensional settings. We build upon prior work that studies assistance through the lens of empowerment: an assistive agent aims to maximize the influence of the human's actions such that they exert a greater control over the environmental outcomes and can solve tasks in fewer steps. We lift the major limitation of prior work in this area--scalability to high-dimensional settings--with contrastive successor representations. We formally prove that these representations estimate a similar notion of empowerment to that studied by prior work and provide a ready-made mechanism for optimizing it. Empirically, our proposed method outperforms prior methods on synthetic benchmarks, and scales to Overcooked, a cooperative game setting. Theoretically, our work connects ideas from information theory, neuroscience, and reinforcement learning, and charts a path for representations to play a critical role in solving assistive problems.
Abstract:Image and video generative models that are pre-trained on Internet-scale data can greatly increase the generalization capacity of robot learning systems. These models can function as high-level planners, generating intermediate subgoals for low-level goal-conditioned policies to reach. However, the performance of these systems can be greatly bottlenecked by the interface between generative models and low-level controllers. For example, generative models may predict photorealistic yet physically infeasible frames that confuse low-level policies. Low-level policies may also be sensitive to subtle visual artifacts in generated goal images. This paper addresses these two facets of generalization, providing an interface to effectively "glue together" language-conditioned image or video prediction models with low-level goal-conditioned policies. Our method, Generative Hierarchical Imitation Learning-Glue (GHIL-Glue), filters out subgoals that do not lead to task progress and improves the robustness of goal-conditioned policies to generated subgoals with harmful visual artifacts. We find in extensive experiments in both simulated and real environments that GHIL-Glue achieves a 25% improvement across several hierarchical models that leverage generative subgoals, achieving a new state-of-the-art on the CALVIN simulation benchmark for policies using observations from a single RGB camera. GHIL-Glue also outperforms other generalist robot policies across 3/4 language-conditioned manipulation tasks testing zero-shot generalization in physical experiments.
Abstract:Offline goal-conditioned reinforcement learning (GCRL) is a major problem in reinforcement learning (RL) because it provides a simple, unsupervised, and domain-agnostic way to acquire diverse behaviors and representations from unlabeled data without rewards. Despite the importance of this setting, we lack a standard benchmark that can systematically evaluate the capabilities of offline GCRL algorithms. In this work, we propose OGBench, a new, high-quality benchmark for algorithms research in offline goal-conditioned RL. OGBench consists of 8 types of environments, 85 datasets, and reference implementations of 6 representative offline GCRL algorithms. We have designed these challenging and realistic environments and datasets to directly probe different capabilities of algorithms, such as stitching, long-horizon reasoning, and the ability to handle high-dimensional inputs and stochasticity. While representative algorithms may rank similarly on prior benchmarks, our experiments reveal stark strengths and weaknesses in these different capabilities, providing a strong foundation for building new algorithms. Project page: https://seohong.me/projects/ogbench
Abstract:Self-supervision has the potential to transform reinforcement learning (RL), paralleling the breakthroughs it has enabled in other areas of machine learning. While self-supervised learning in other domains aims to find patterns in a fixed dataset, self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment. However, these methods have failed to see similar success, both due to a lack of data from slow environments as well as a lack of stable algorithms. We take a step toward addressing both of these issues by releasing a high-performance codebase and benchmark JaxGCRL for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU. The key to this performance is a combination of GPU-accelerated environments and a stable, batched version of the contrastive reinforcement learning algorithm, based on an infoNCE objective, that effectively makes use of this increased data throughput. With this approach, we provide a foundation for future research in self-supervised GCRL, enabling researchers to quickly iterate on new ideas and evaluate them in a diverse set of challenging environments. Website + Code: https://github.com/MichalBortkiewicz/JaxGCRL