Topic:Question Generation
What is Question Generation? Question generation is the process of automatically generating questions from text passages or documents.
Papers and Code
Jul 17, 2025
Abstract:This paper presents our approach for the IberLEF 2025 Task PRESTA: Preguntas y Respuestas sobre Tablas en Espa\~nol (Questions and Answers about Tables in Spanish). Our solution obtains answers to the questions by implementing Python code generation with LLMs that is used to filter and process the table. This solution evolves from the MRT implementation for the Semeval 2025 related task. The process consists of multiple steps: analyzing and understanding the content of the table, selecting the useful columns, generating instructions in natural language, translating these instructions to code, running it, and handling potential errors or exceptions. These steps use open-source LLMs and fine-grained optimized prompts for each step. With this approach, we achieved an accuracy score of 85\% in the task.
* Accepted as an official challenge paper in the PRESTA: Questions and
Answers over Tabular Data shared task at IberLEF 2025, colocated with the
41st SEPLN Conference in Zaragoza, Spain
Via

Jul 17, 2025
Abstract:The development of large language models (LLMs) has successfully transformed knowledge-based systems such as open domain question nswering, which can automatically produce vast amounts of seemingly coherent information. Yet, those models have several disadvantages like hallucinations or confident generation of incorrect or unverifiable facts. In this paper, we introduce a new approach to the development of expert systems using LLMs in a controlled and transparent way. By limiting the domain and employing a well-structured prompt-based extraction approach, we produce a symbolic representation of knowledge in Prolog, which can be validated and corrected by human experts. This approach also guarantees interpretability, scalability and reliability of the developed expert systems. Via quantitative and qualitative experiments with Claude Sonnet 3.7 and GPT-4.1, we show strong adherence to facts and semantic coherence on our generated knowledge bases. We present a transparent hybrid solution that combines the recall capacity of LLMs with the precision of symbolic systems, thereby laying the foundation for dependable AI applications in sensitive domains.
Via

Jul 17, 2025
Abstract:The evaluation of large language models is a complex task, in which several approaches have been proposed. The most common is the use of automated benchmarks in which LLMs have to answer multiple-choice questions of different topics. However, this method has certain limitations, being the most concerning, the poor correlation with the humans. An alternative approach, is to have humans evaluate the LLMs. This poses scalability issues as there is a large and growing number of models to evaluate making it impractical (and costly) to run traditional studies based on recruiting a number of evaluators and having them rank the responses of the models. An alternative approach is the use of public arenas, such as the popular LM arena, on which any user can freely evaluate models on any question and rank the responses of two models. The results are then elaborated into a model ranking. An increasingly important aspect of LLMs is their energy consumption and, therefore, evaluating how energy awareness influences the decisions of humans in selecting a model is of interest. In this paper, we present GEA, the Generative Energy Arena, an arena that incorporates information on the energy consumption of the model in the evaluation process. Preliminary results obtained with GEA are also presented, showing that for most questions, when users are aware of the energy consumption, they favor smaller and more energy efficient models. This suggests that for most user interactions, the extra cost and energy incurred by the more complex and top-performing models do not provide an increase in the perceived quality of the responses that justifies their use.
Via

Jul 16, 2025
Abstract:With the growing need for diverse and scalable data in indoor scene tasks, such as question answering and dense captioning, we propose 3D-MoRe, a novel paradigm designed to generate large-scale 3D-language datasets by leveraging the strengths of foundational models. The framework integrates key components, including multi-modal embedding, cross-modal interaction, and a language model decoder, to process natural language instructions and 3D scene data. This approach facilitates enhanced reasoning and response generation in complex 3D environments. Using the ScanNet 3D scene dataset, along with text annotations from ScanQA and ScanRefer, 3D-MoRe generates 62,000 question-answer (QA) pairs and 73,000 object descriptions across 1,513 scenes. We also employ various data augmentation techniques and implement semantic filtering to ensure high-quality data. Experiments on ScanQA demonstrate that 3D-MoRe significantly outperforms state-of-the-art baselines, with the CIDEr score improving by 2.15\%. Similarly, on ScanRefer, our approach achieves a notable increase in CIDEr@0.5 by 1.84\%, highlighting its effectiveness in both tasks. Our code and generated datasets will be publicly released to benefit the community, and both can be accessed on the https://3D-MoRe.github.io.
* Accepted by IROS 2025
Via

Jul 16, 2025
Abstract:Humans are integral components of the transportation ecosystem, and understanding their behaviors is crucial to facilitating the development of safe driving systems. Although recent progress has explored various aspects of human behavior$\unicode{x2014}$such as motion, trajectories, and intention$\unicode{x2014}$a comprehensive benchmark for evaluating human behavior understanding in autonomous driving remains unavailable. In this work, we propose $\textbf{MMHU}$, a large-scale benchmark for human behavior analysis featuring rich annotations, such as human motion and trajectories, text description for human motions, human intention, and critical behavior labels relevant to driving safety. Our dataset encompasses 57k human motion clips and 1.73M frames gathered from diverse sources, including established driving datasets such as Waymo, in-the-wild videos from YouTube, and self-collected data. A human-in-the-loop annotation pipeline is developed to generate rich behavior captions. We provide a thorough dataset analysis and benchmark multiple tasks$\unicode{x2014}$ranging from motion prediction to motion generation and human behavior question answering$\unicode{x2014}$thereby offering a broad evaluation suite. Project page : https://MMHU-Benchmark.github.io.
Via

Jul 15, 2025
Abstract:As deep generative models proliferate across the AI landscape, industrial practitioners still face critical yet unanswered questions about which deep generative models best suit complex manufacturing design tasks. This work addresses this question through a complete study of five representative models (Variational Autoencoder, Generative Adversarial Network, multimodal Variational Autoencoder, Denoising Diffusion Probabilistic Model, and Multinomial Diffusion Model) on industrial tire architecture generation. Our evaluation spans three key industrial scenarios: (i) unconditional generation of complete multi-component designs, (ii) component-conditioned generation (reconstructing architectures from partial observations), and (iii) dimension-constrained generation (creating designs that satisfy specific dimensional requirements). To enable discrete diffusion models to handle conditional scenarios, we introduce categorical inpainting, a mask-aware reverse diffusion process that preserves known labels without requiring additional training. Our evaluation employs geometry-aware metrics specifically calibrated for industrial requirements, quantifying spatial coherence, component interaction, structural connectivity, and perceptual fidelity. Our findings reveal that diffusion models achieve the strongest overall performance; a masking-trained VAE nonetheless outperforms the multimodal variant MMVAE\textsuperscript{+} on nearly all component-conditioned metrics, and within the diffusion family MDM leads in-distribution whereas DDPM generalises better to out-of-distribution dimensional constraints.
Via

Jul 16, 2025
Abstract:Large language models excel in question-answering (QA) yet still struggle with multi-hop reasoning and temporal questions. Query-based knowledge graph QA (KGQA) offers a modular alternative by generating executable queries instead of direct answers. We explore multi-stage query-based framework for WikiData QA, proposing multi-stage approach that enhances performance on challenging multi-hop and temporal benchmarks. Through generalization and rejection studies, we evaluate robustness across multi-hop and temporal QA datasets. Additionally, we introduce a novel entity linking and predicate matching method using CoT reasoning. Our results demonstrate the potential of query-based multi-stage KGQA framework for improving multi-hop and temporal QA with small language models. Code and data: https://github.com/ar2max/NLDB-KGQA-System
* Lecture Notes in Computer Science, vol 15836. Springer, Cham.,
2025
* 15 pages, 3 figures, 7 tables
Via

Jul 16, 2025
Abstract:Recent progress has been made in region-aware vision-language modeling, particularly with the emergence of the Describe Anything Model (DAM). DAM is capable of generating detailed descriptions of any specific image areas or objects without the need for additional localized image-text alignment supervision. We hypothesize that such region-level descriptive capability is beneficial for the task of Visual Question Answering (VQA), especially in challenging scenarios involving images with dense text. In such settings, the fine-grained extraction of textual information is crucial to producing correct answers. Motivated by this, we introduce DAM-QA, a framework with a tailored evaluation protocol, developed to investigate and harness the region-aware capabilities from DAM for the text-rich VQA problem that requires reasoning over text-based information within images. DAM-QA incorporates a mechanism that aggregates answers from multiple regional views of image content, enabling more effective identification of evidence that may be tied to text-related elements. Experiments on six VQA benchmarks show that our approach consistently outperforms the baseline DAM, with a notable 7+ point gain on DocVQA. DAM-QA also achieves the best overall performance among region-aware models with fewer parameters, significantly narrowing the gap with strong generalist VLMs. These results highlight the potential of DAM-like models for text-rich and broader VQA tasks when paired with efficient usage and integration strategies. Our code is publicly available at https://github.com/Linvyl/DAM-QA.git.
* 11 pages, 5 figures. Accepted to VisionDocs @ ICCV 2025
Via

Jul 16, 2025
Abstract:This paper introduces DualReward, a novel reinforcement learning framework for automatic distractor generation in cloze tests. Unlike conventional approaches that rely primarily on supervised learning or static generative models, our method employs a dual reward structure with adaptive scaling that differentiates between human-created gold standard distractors and model-generated candidates. The framework dynamically adjusts reward signal intensity based on model performance and confidence. We evaluate our approach on both passage-level (CLOTH-F) and sentence-level (MCQ) cloze test datasets, demonstrating consistent improvements over state-of-the-art baselines. Experimental results show that our adaptive reward scaling mechanism provides modest but consistent benefits on homogeneous datasets (CLOTH-F) and more substantial improvements (3.48-3.86% in P@1) on diverse, cross-domain data (MCQ), suggesting its particular effectiveness for handling varied question types and domains. Our work offers a flexible framework that effectively balances learning from reliable human examples while exploring novel, high-quality distractors for automated test generation.
* Accepted to CCL 2025
Via

Jul 17, 2025
Abstract:Frontier AI models demonstrate formidable breadth of knowledge. But how close are they to true human -- or superhuman -- expertise? Genuine experts can tackle the hardest problems and push the boundaries of scientific understanding. To illuminate the limits of frontier model capabilities, we turn away from contrived competitive programming puzzles, and instead focus on real-life research problems. We construct FormulaOne, a benchmark that lies at the intersection of graph theory, logic, and algorithms, all well within the training distribution of frontier models. Our problems are incredibly demanding, requiring an array of reasoning steps. The dataset has three key properties. First, it is of commercial interest and relates to practical large-scale optimisation problems, such as those arising in routing, scheduling, and network design. Second, it is generated from the highly expressive framework of Monadic Second-Order (MSO) logic on graphs, paving the way toward automatic problem generation at scale; ideal for building RL environments. Third, many of our problems are intimately related to the frontier of theoretical computer science, and to central conjectures therein, such as the Strong Exponential Time Hypothesis (SETH). As such, any significant algorithmic progress on our dataset, beyond known results, could carry profound theoretical implications. Remarkably, state-of-the-art models like OpenAI's o3 fail entirely on FormulaOne, solving less than 1% of the questions, even when given 10 attempts and explanatory fewshot examples -- highlighting how far they remain from expert-level understanding in some domains. To support further research, we additionally curate FormulaOne-Warmup, offering a set of simpler tasks, from the same distribution. We release the full corpus along with a comprehensive evaluation framework.
Via
