The rapid digitalization of customer service has intensified the demand for conversational agents capable of providing accurate and natural interactions. In the Algerian context, this is complicated by the linguistic complexity of Darja, a dialect characterized by non-standardized orthography, extensive code-switching with French, and the simultaneous use of Arabic and Latin (Arabizi) scripts. This paper introduces DziriBOT, a hybrid intelligent conversational agent specifically engineered to overcome these challenges. We propose a multi-layered architecture that integrates specialized Natural Language Understanding (NLU) with Retrieval-Augmented Generation (RAG), allowing for both structured service flows and dynamic, knowledge-intensive responses grounded in curated enterprise documentation. To address the low-resource nature of Darja, we systematically evaluate three distinct approaches: a sparse-feature Rasa pipeline, classical machine learning baselines, and transformer-based fine-tuning. Our experimental results demonstrate that the fine-tuned DziriBERT model achieves state-of-the-art performance. These results significantly outperform traditional baselines, particularly in handling orthographic noise and rare intents. Ultimately, DziriBOT provides a robust, scalable solution that bridges the gap between formal language models and the linguistic realities of Algerian users, offering a blueprint for dialect-aware automation in the regional market.
Low-Rank Adaptation (LoRA) is widely used for federated fine-tuning. Yet under non-IID settings, it can substantially underperform full-parameter fine-tuning. Through with-high-probability robustness analysis, we uncover that this gap can be attributed to two coupled mismatches: (i) update-space mismatch, where clients optimize in a low-rank subspace but aggregation occurs in the full space; and (ii) optimizer-state mismatch, where unsynchronized adaptive states amplify drift across rounds. We propose FedGaLore, which combines client-side GaLore-style gradient-subspace optimization with server-side drift-robust synchronization of projected second-moment states via spectral shared-signal extraction, to address this challenge. Across NLU, vision, and NLG benchmarks, FedGaLore improves robustness and accuracy over state-of-the-art federated LoRA baselines in non-IID settings.
Multimodal retrieval systems typically employ Vision Language Models (VLMs) that encode images and text independently into vectors within a shared embedding space. Despite incorporating text encoders, VLMs consistently underperform specialized text models on text-only retrieval tasks. Moreover, introducing additional text encoders increases storage, inference overhead, and exacerbates retrieval inefficiencies, especially in multilingual settings. To address these limitations, we propose a multi-task learning framework that unifies the feature representation across images, long and short texts, and intent-rich queries. To our knowledge, this is the first work to jointly optimize multilingual image retrieval, text retrieval, and natural language understanding (NLU) tasks within a single framework. Our approach integrates image and text retrieval with a shared text encoder that is enhanced by NLU features for intent understanding and retrieval accuracy.
The AI era has ushered in Large Language Models (LLM) to the technological forefront, which has been much of the talk in 2023, and is likely to remain as such for many years to come. LLMs are the AI models that are the power house behind generative AI applications such as ChatGPT. These AI models, fueled by vast amounts of data and computational prowess, have unlocked remarkable capabilities, from human-like text generation to assisting with natural language understanding (NLU) tasks. They have quickly become the foundation upon which countless applications and software services are being built, or at least being augmented with. However, as with any groundbreaking innovations, the rise of LLMs brings forth critical safety, privacy, and ethical concerns. These models are found to have a propensity to leak private information, produce false information, and can be coerced into generating content that can be used for nefarious purposes by bad actors, or even by regular users unknowingly. Implementing safeguards and guardrailing techniques is imperative for applications to ensure that the content generated by LLMs are safe, secure, and ethical. Thus, frameworks to deploy mechanisms that prevent misuse of these models via application implementations is imperative. In this study, wepropose a Flexible Adaptive Sequencing mechanism with trust and safety modules, that can be used to implement safety guardrails for the development and deployment of LLMs.
Evaluating the performance of various model architectures, such as transformers, large language models (LLMs), and other NLP systems, requires comprehensive benchmarks that measure performance across multiple dimensions. Among these, the evaluation of natural language understanding (NLU) is particularly critical as it serves as a fundamental criterion for assessing model capabilities. Thus, it is essential to establish benchmarks that enable thorough evaluation and analysis of NLU abilities from diverse perspectives. While the GLUE benchmark has set a standard for evaluating English NLU, similar benchmarks have been developed for other languages, such as CLUE for Chinese, FLUE for French, and JGLUE for Japanese. However, no comparable benchmark currently exists for the Turkish language. To address this gap, we introduce TrGLUE, a comprehensive benchmark encompassing a variety of NLU tasks for Turkish. In addition, we present SentiTurca, a specialized benchmark for sentiment analysis. To support researchers, we also provide fine-tuning and evaluation code for transformer-based models, facilitating the effective use of these benchmarks. TrGLUE comprises Turkish-native corpora curated to mirror the domains and task formulations of GLUE-style evaluations, with labels obtained through a semi-automated pipeline that combines strong LLM-based annotation, cross-model agreement checks, and subsequent human validation. This design prioritizes linguistic naturalness, minimizes direct translation artifacts, and yields a scalable, reproducible workflow. With TrGLUE, our goal is to establish a robust evaluation framework for Turkish NLU, empower researchers with valuable resources, and provide insights into generating high-quality semi-automated datasets.
Catastrophic forgetting poses a fundamental challenge in continual learning, particularly when models are quantized for deployment efficiency. We systematically investigate the interplay between quantization precision (FP16, INT8, INT4) and replay buffer strategies in large language models, revealing unexpected dynamics. While FP16 achieves superior initial task performance (74.44% on NLU), we observe a striking inversion on subsequent tasks: quantized models outperform FP16 by 8-15% on final task forward accuracy, with INT4 achieving nearly double FP16's performance on Code generation (40% vs 20%). Critically, even minimal replay buffers (0.1%) dramatically improve retention - increasing NLU retention after Math training from 45% to 65% across all precision levels - with INT8 consistently achieving the optimal balance between learning plasticity and knowledge retention. We hypothesize that quantization-induced noise acts as implicit regularization, preventing the overfitting to new task gradients that plagues high-precision models. These findings challenge the conventional wisdom that higher precision is always preferable, suggesting instead that INT8 quantization offers both computational efficiency and superior continual learning dynamics. Our results provide practical guidelines for deploying compressed models in continual learning scenarios: small replay buffers (1-2%) suffice for NLU tasks, while Math and Code benefit from moderate buffers (5-10%), with quantized models requiring less replay than FP16 to achieve comparable retention. Code is available at https://github.com/Festyve/LessIsMore.

Word meaning, representation, and interpretation play fundamental roles in natural language understanding (NLU), natural language processing (NLP), and natural language generation (NLG) tasks. Many of the inherent difficulties in these tasks stem from Multi-word Expressions (MWEs), which complicate the tasks by introducing ambiguity, idiomatic expressions, infrequent usage, and a wide range of variations. Significant effort and substantial progress have been made in addressing the challenging nature of MWEs in Western languages, particularly English. This progress is attributed in part to the well-established research communities and the abundant availability of computational resources. However, the same level of progress is not true for language families such as Chinese and closely related Asian languages, which continue to lag behind in this regard. While sub-word modelling has been successfully applied to many Western languages to address rare words improving phrase comprehension, and enhancing machine translation (MT) through techniques like byte-pair encoding (BPE), it cannot be applied directly to ideograph language scripts like Chinese. In this work, we conduct a systematic study of the Chinese character decomposition technology in the context of MWE-aware neural machine translation (NMT). Furthermore, we report experiments to examine how Chinese character decomposition technology contributes to the representation of the original meanings of Chinese words and characters, and how it can effectively address the challenges of translating MWEs.




As large pre-trained language models become increasingly critical to natural language understanding (NLU) tasks, their substantial computational and memory requirements have raised significant economic and environmental concerns. Addressing these challenges, this paper introduces the Elastic Language Model (ELM), a novel neural architecture search (NAS) method optimized for compact language models. ELM extends existing NAS approaches by introducing a flexible search space with efficient transformer blocks and dynamic modules for dimension and head number adjustment. These innovations enhance the efficiency and flexibility of the search process, which facilitates more thorough and effective exploration of model architectures. We also introduce novel knowledge distillation losses that preserve the unique characteristics of each block, in order to improve the discrimination between architectural choices during the search process. Experiments on masked language modeling and causal language modeling tasks demonstrate that models discovered by ELM significantly outperform existing methods.
Cantonese, although spoken by millions, remains under-resourced due to policy and diglossia. To address this scarcity of evaluation frameworks for Cantonese, we introduce \textsc{\textbf{CantoNLU}}, a benchmark for Cantonese natural language understanding (NLU). This novel benchmark spans seven tasks covering syntax and semantics, including word sense disambiguation, linguistic acceptability judgment, language detection, natural language inference, sentiment analysis, part-of-speech tagging, and dependency parsing. In addition to the benchmark, we provide model baseline performance across a set of models: a Mandarin model without Cantonese training, two Cantonese-adapted models obtained by continual pre-training a Mandarin model on Cantonese text, and a monolingual Cantonese model trained from scratch. Results show that Cantonese-adapted models perform best overall, while monolingual models perform better on syntactic tasks. Mandarin models remain competitive in certain settings, indicating that direct transfer may be sufficient when Cantonese domain data is scarce. We release all datasets, code, and model weights to facilitate future research in Cantonese NLP.




Catastrophic forgetting is a common issue in model fine-tuning, especially when the downstream domain contains limited labeled data or differs greatly from the pre-training distribution. Existing parameter-efficient fine-tuning methods operate in the weight space by modifying or augmenting the pre-trained model's parameters, which can yield models overly specialized to the available downstream data. To mitigate the risk of overwriting pre-trained knowledge and enhance robustness, we propose to fine-tune the pre-trained model in the feature space. Two new fine-tuning methods are proposed: LoRFA (Low-Rank Feature Adaptation) and VeFA (Vector-Based Feature Adaptation). Feature space adaptation is inspired by the idea of effect equivalence modeling (EEM) of downstream lurking variables causing distribution shifts, which posits that unobserved factors can be represented as the total equivalent amount on observed features. By compensating for the effects of downstream lurking variables via a lightweight feature-level transformation, the pre-trained representations can be preserved, which improves model generalization under distribution shift. We evaluate LoRFA and VeFA versus LoRA on image classification, NLU, and NLG, covering both standard fine-tuning metrics and robustness. Feature space adaptation achieves comparable fine-tuning results and consistently stronger robustness.