Multi-Agent Path Finding (MAPF) is an NP-hard problem with applications in warehouse automation and multi-robot coordination. Learning-based MAPF solvers offer fast and scalable planning but often produce feasible trajectories that contain unnecessary or oscillatory movements. We propose Judgelight, a post-optimization method that improves trajectory quality after a MAPF solver generates a feasible schedule. Judgelight collapses closed subwalks in agents' trajectories to remove redundant movements while preserving all feasibility constraints. We formalize this process as MAPF-Collapse, prove that it is NP-hard, and present an exact optimization approach by formulating it as integer linear programming (ILP) problem. Experimental results show Judgelight consistently reduces solution cost by around 20%, particularly for learning-based solvers, producing trajectories that are better suited for real-world deployment.
Ransomware has become one of the most serious cybersecurity threats causing major financial losses and operational disruptions worldwide.Traditional detection methods such as static analysis, heuristic scanning and behavioral analysis often fall short when used alone. To address these limitations, this paper presents multimodal multi agent ransomware analysis framework designed for ransomware classification. Proposed multimodal multiagent architecture combines information from static, dynamic and network sources. Each data type is handled by specialized agent that uses auto encoder based feature extraction. These representations are then integrated through a fusion agent. After that fused representation are used by transformer based classifier. It identifies the specific ransomware family. The agents interact through an interagent feedback mechanism that iteratively refines feature representations by suppressing low confidence information. The framework was evaluated on large scale datasets containing thousands of ransomware and benign samples. Multiple experiments were conducted on ransomware dataset. It outperforms single modality and nonadaptive fusion baseline achieving improvement of up to 0.936 in Macro-F1 for family classification and reducing calibration error. Over 100 epochs, the agentic feedback loop displays a stable monotonic convergence leading to over +0.75 absolute improvement in terms of agent quality and a final composite score of around 0.88 without fine tuning of the language models. Zeroday ransomware detection remains family dependent on polymorphism and modality disruptions. Confidence aware abstention enables reliable real world deployment by favoring conservativeand trustworthy decisions over forced classification. The findings indicate that proposed approach provides a practical andeffective path toward improving real world ransomware defense systems.
Medical reasoning models remain constrained by parametric knowledge and are thus susceptible to forgetting and hallucinations. DeepResearch (DR) models ground outputs in verifiable evidence from tools and perform strongly in general domains, but their direct transfer to medical field yields relatively limited gains. We attribute this to two gaps: task characteristic and tool-use scaling. Medical questions require evidence interpretation in a knowledge-intensive clinical context; while general DR models can retrieve information, they often lack clinical-context reasoning and thus "find it but fail to use it," leaving performance limited by medical abilities. Moreover, in medical scenarios, blindly scaling tool-call can inject noisy context, derailing sensitive medical reasoning and prompting repetitive evidence-seeking along incorrect paths. Therefore, we propose DeepMed. For data, we deploy a multi-hop med-search QA synthesis method supporting the model to apply the DR paradigm in medical contexts. For training, we introduce a difficulty-aware turn-penalty to suppress excessive tool-call growth. For inference, we bring a monitor to help validate hypotheses within a controlled number of steps and avoid context rot. Overall, on seven medical benchmarks, DeepMed improves its base model by 9.79\% on average and outperforms larger medical reasoning and DR models.
Strategic decision-making in multi-agent settings is a key challenge for large language models (LLMs), particularly when coordination and negotiation must unfold over extended conversations. While recent work has explored the use of LLMs in isolated decision tasks, little attention has been given to optimizing long-term objectives through dialogue. We introduce \textbf{GameTalk}, a framework for training LLMs to make strategic decisions via multi-turn interactions. Unlike prior work that focuses on single-turn objectives or static action prediction, we train LLMs to optimize a global objective across full conversations. We achieve this by adapting fine-tuning methods like GRPO, DPO, and STaR to incorporate reward signals that depend on the entire interaction. We evaluate this approach on a suite of increasingly complex games, designed to stress different aspects of reasoning, coordination, and opponent modeling. Our results show that GameTalk significantly outperforms untrained models, especially under reward shaping, with DPO consistently yielding the strongest gains. These findings position conversational fine-tuning as a promising path for LLMs to reason, negotiate, and act in interactive environments.
Understanding and reasoning about the physical world requires spatial intelligence: the ability to interpret geometry, perspective, and spatial relations beyond 2D perception. While recent vision large models (VLMs) excel at visual understanding, they remain fundamentally 2D perceivers and struggle with genuine 3D reasoning. We introduce Think3D, a framework that enables VLM agents to think with 3D space. By leveraging 3D reconstruction models that recover point clouds and camera poses from images or videos, Think3D allows the agent to actively manipulate space through camera-based operations and ego/global-view switching, transforming spatial reasoning into an interactive 3D chain-of-thought process. Without additional training, Think3D significantly improves the spatial reasoning performance of advanced models such as GPT-4.1 and Gemini 2.5 Pro, yielding average gains of +7.8% on BLINK Multi-view and MindCube, and +4.7% on VSI-Bench. We further show that smaller models, which struggle with spatial exploration, benefit significantly from a reinforcement learning policy that enables the model to select informative viewpoints and operations. With RL, the benefit from tool usage increases from +0.7% to +6.8%. Our findings demonstrate that training-free, tool-augmented spatial exploration is a viable path toward more flexible and human-like 3D reasoning in multimodal agents, establishing a new dimension of multimodal intelligence. Code and weights are released at https://github.com/zhangzaibin/spagent.
Distributed Multi-Agent Path Finding (MAPF) integrated with Multi-Agent Reinforcement Learning (MARL) has emerged as a prominent research focus, enabling real-time cooperative decision-making in partially observable environments through inter-agent communication. However, due to insufficient collaborative and perceptual capabilities, existing methods are inadequate for scaling across diverse environmental conditions. To address these challenges, we propose PC2P, a novel distributed MAPF method derived from a Q-learning-based MARL framework. Initially, we introduce a personalized-enhanced communication mechanism based on dynamic graph topology, which ascertains the core aspects of ``who" and ``what" in interactive process through three-stage operations: selection, generation, and aggregation. Concurrently, we incorporate local crowd perception to enrich agents' heuristic observation, thereby strengthening the model's guidance for effective actions via the integration of static spatial constraints and dynamic occupancy changes. To resolve extreme deadlock issues, we propose a region-based deadlock-breaking strategy that leverages expert guidance to implement efficient coordination within confined areas. Experimental results demonstrate that PC2P achieves superior performance compared to state-of-the-art distributed MAPF methods in varied environments. Ablation studies further confirm the effectiveness of each module for overall performance.
Executing a multi-agent plan can be challenging when an agent is delayed, because this typically creates conflicts with other agents. So, we need to quickly find a new safe plan. Replanning only the delayed agent often does not result in an efficient plan, and sometimes cannot even yield a feasible plan. On the other hand, replanning other agents may lead to a cascade of changes and delays. We show how to efficiently replan by tracking and using the temporal flexibility of other agents while avoiding cascading delays. This flexibility is the maximum delay an agent can take without changing the order of or further delaying more agents. Our algorithm, FlexSIPP, precomputes all possible plans for the delayed agent, also returning the changes for the other agents, for any single-agent delay within the given scenario. We demonstrate our method in a real-world case study of replanning trains in the densely-used Dutch railway network. Our experiments show that FlexSIPP provides effective solutions, relevant to real-world adjustments, and within a reasonable timeframe.
In this paper, we plan missions for a fleet of agents in undirected graphs, such as grids, with multiple goals. In contrast to regular multi-agent path-finding, the solver finds and updates the assignment of goals to the agents on its own. In the continuous case for a point agent with motions in the Euclidean plane, the problem can be solved arbitrarily close to optimal. For discrete variants that incur node and edge conflicts, we show that it can be solved in polynomial time, which is unexpected, since traditional vehicle routing on general graphs is NP-hard. We implement a corresponding planner that finds conflict-free optimized routes for the agents. Global assignment strategies greatly reduce the number of conflicts, with the remaining ones resolved by elaborating on the concept of ants-on-the-stick, by solving local assignment problems, by interleaving agent paths, and by kicking agents that have already arrived out of their destinations
LLM-based reasoning models have enabled the development of agentic systems that act as co-scientists, assisting in multi-step scientific analysis. However, evaluating these systems is challenging, as it requires realistic, end-to-end research scenarios that integrate data analysis, interpretation, and the generation of new insights from the experimental data. To address this limitation, we introduce HeurekaBench, a framework to create benchmarks with exploratory, open-ended research questions for experimental datasets. Each such question is grounded in a scientific study and its corresponding code repository, and is created using a semi-automated pipeline that leverages multiple LLMs to extract insights and generate candidate workflows, which are then verified against reported findings. We instantiate the framework in single-cell biology to obtain sc-HeurekaBench benchmark and use it to compare state-of-the-art single-cell agents. We further showcase the benefits of our benchmark for quantitatively analyzing current design choices in agentic systems. We find that the addition of a critic module can improve ill-formed responses for open-source LLM-based agents by up to 22% and close the gap with their closed-source counterparts. Overall, HeurekaBench sets a path toward rigorous, end-to-end evaluation of scientific agents, grounding benchmark construction in real scientific workflows.
The manual, resource-intensive process of complying with the EU Taxonomy presents a significant challenge for companies. While Large Language Models (LLMs) offer a path to automation, research is hindered by a lack of public benchmark datasets. To address this gap, we introduce a novel, structured dataset from 190 corporate reports, containing ground-truth economic activities and quantitative Key Performance Indicators (KPIs). We use this dataset to conduct the first systematic evaluation of LLMs on the core compliance workflow. Our results reveal a clear performance gap between qualitative and quantitative tasks. LLMs show moderate success in the qualitative task of identifying economic activities, with a multi-step agentic framework modestly enhancing precision. Conversely, the models comprehensively fail at the quantitative task of predicting financial KPIs in a zero-shot setting. We also discover a paradox, where concise metadata often yields superior performance to full, unstructured reports, and find that model confidence scores are poorly calibrated. We conclude that while LLMs are not ready for full automation, they can serve as powerful assistive tools for human experts. Our dataset provides a public benchmark for future research.