Molecular Property Prediction


Molecular property prediction is the process of predicting the properties of molecules using machine-learning models.

Learning Molecular Chirality via Chiral Determinant Kernels

Add code
Feb 07, 2026
Viaarxiv icon

Beyond Learning on Molecules by Weakly Supervising on Molecules

Add code
Feb 04, 2026
Viaarxiv icon

Cardinality-Preserving Structured Sparse Graph Transformers for Molecular Property Prediction

Add code
Feb 02, 2026
Viaarxiv icon

Local-Global Multimodal Contrastive Learning for Molecular Property Prediction

Add code
Jan 30, 2026
Viaarxiv icon

From Evaluation to Design: Using Potential Energy Surface Smoothness Metrics to Guide Machine Learning Interatomic Potential Architectures

Add code
Feb 04, 2026
Viaarxiv icon

Entropy-Guided Dynamic Tokens for Graph-LLM Alignment in Molecular Understanding

Add code
Feb 02, 2026
Viaarxiv icon

XIMP: Cross Graph Inter-Message Passing for Molecular Property Prediction

Add code
Jan 26, 2026
Viaarxiv icon

Molecular Representations in Implicit Functional Space via Hyper-Networks

Add code
Jan 29, 2026
Viaarxiv icon

Disentangling multispecific antibody function with graph neural networks

Add code
Jan 30, 2026
Viaarxiv icon

Accelerating Large-Scale Cheminformatics Using a Byte-Offset Indexing Architecture for Terabyte-Scale Data Integration

Add code
Jan 26, 2026
Viaarxiv icon