Topic:Molecular Property Prediction
What is Molecular Property Prediction? Molecular property prediction is the process of predicting the properties of molecules using machine-learning models.
Papers and Code
May 29, 2025
Abstract:Recent data-efficient molecular generation approaches exploit graph grammars to introduce interpretability into the generative models. However, grammar learning therein relies on expert annotation or unreliable heuristics for algorithmic inference. We propose Foundation Molecular Grammar (FMG), which leverages multi-modal foundation models (MMFMs) to induce an interpretable molecular language. By exploiting the chemical knowledge of an MMFM, FMG renders molecules as images, describes them as text, and aligns information across modalities using prompt learning. FMG can be used as a drop-in replacement for the prior grammar learning approaches in molecular generation and property prediction. We show that FMG not only excels in synthesizability, diversity, and data efficiency but also offers built-in chemical interpretability for automated molecular discovery workflows. Code is available at https://github.com/shiningsunnyday/induction.
* ICML 2025
Via

May 30, 2025
Abstract:Protein dynamics play a crucial role in protein biological functions and properties, and their traditional study typically relies on time-consuming molecular dynamics (MD) simulations conducted in silico. Recent advances in generative modeling, particularly denoising diffusion models, have enabled efficient accurate protein structure prediction and conformation sampling by learning distributions over crystallographic structures. However, effectively integrating physical supervision into these data-driven approaches remains challenging, as standard energy-based objectives often lead to intractable optimization. In this paper, we introduce Energy-based Alignment (EBA), a method that aligns generative models with feedback from physical models, efficiently calibrating them to appropriately balance conformational states based on their energy differences. Experimental results on the MD ensemble benchmark demonstrate that EBA achieves state-of-the-art performance in generating high-quality protein ensembles. By improving the physical plausibility of generated structures, our approach enhances model predictions and holds promise for applications in structural biology and drug discovery.
* Published as a conference paper at ICML 2025
Via

May 28, 2025
Abstract:Processing global geometric context while preserving equivariance is crucial when modeling biological, chemical, and physical systems. Yet, this is challenging due to the computational demands of equivariance and global context at scale. Standard methods such as equivariant self-attention suffer from quadratic complexity, while local methods such as distance-based message passing sacrifice global information. Inspired by the recent success of state-space and long-convolutional models, we introduce Geometric Hyena, the first equivariant long-convolutional model for geometric systems. Geometric Hyena captures global geometric context at sub-quadratic complexity while maintaining equivariance to rotations and translations. Evaluated on all-atom property prediction of large RNA molecules and full protein molecular dynamics, Geometric Hyena outperforms existing equivariant models while requiring significantly less memory and compute that equivariant self-attention. Notably, our model processes the geometric context of 30k tokens 20x faster than the equivariant transformer and allows 72x longer context within the same budget.
Via

May 28, 2025
Abstract:Understanding the reasoning behind deep learning model predictions is crucial in cheminformatics and drug discovery, where molecular design determines their properties. However, current evaluation frameworks for Explainable AI (XAI) in this domain often rely on artificial datasets or simplified tasks, employing data-derived metrics that fail to capture the complexity of real-world scenarios and lack a direct link to explanation faithfulness. To address this, we introduce B-XAIC, a novel benchmark constructed from real-world molecular data and diverse tasks with known ground-truth rationales for assigned labels. Through a comprehensive evaluation using B-XAIC, we reveal limitations of existing XAI methods for Graph Neural Networks (GNNs) in the molecular domain. This benchmark provides a valuable resource for gaining deeper insights into the faithfulness of XAI, facilitating the development of more reliable and interpretable models.
* 26 pages, 16 figures, 5 tables
Via

May 27, 2025
Abstract:While large language models (LLMs) with Chain-of-Thought (CoT) reasoning excel in mathematics and coding, their potential for systematic reasoning in chemistry, a domain demanding rigorous structural analysis for real-world tasks like drug design and reaction engineering, remains untapped. Current benchmarks focus on simple knowledge retrieval, neglecting step-by-step reasoning required for complex tasks such as molecular optimization and reaction prediction. To address this, we introduce ChemCoTBench, a reasoning framework that bridges molecular structure understanding with arithmetic-inspired operations, including addition, deletion, and substitution, to formalize chemical problem-solving into transparent, step-by-step workflows. By treating molecular transformations as modular "chemical operations", the framework enables slow-thinking reasoning, mirroring the logic of mathematical proofs while grounding solutions in real-world chemical constraints. We evaluate models on two high-impact tasks: Molecular Property Optimization and Chemical Reaction Prediction. These tasks mirror real-world challenges while providing structured evaluability. By providing annotated datasets, a reasoning taxonomy, and baseline evaluations, ChemCoTBench bridges the gap between abstract reasoning methods and practical chemical discovery, establishing a foundation for advancing LLMs as tools for AI-driven scientific innovation.
* 22 pages, 10 figures
Via

May 25, 2025
Abstract:Molecular dynamics (MD) provides insights into atomic-scale processes by integrating over time the equations that describe the motion of atoms under the action of interatomic forces. Machine learning models have substantially accelerated MD by providing inexpensive predictions of the forces, but they remain constrained to minuscule time integration steps, which are required by the fast time scale of atomic motion. In this work, we propose FlashMD, a method to predict the evolution of positions and momenta over strides that are between one and two orders of magnitude longer than typical MD time steps. We incorporate considerations on the mathematical and physical properties of Hamiltonian dynamics in the architecture, generalize the approach to allow the simulation of any thermodynamic ensemble, and carefully assess the possible failure modes of such a long-stride MD approach. We validate FlashMD's accuracy in reproducing equilibrium and time-dependent properties, using both system-specific and general-purpose models, extending the ability of MD simulation to reach the long time scales needed to model microscopic processes of high scientific and technological relevance.
Via

May 24, 2025
Abstract:Density functional theory (DFT) is a fundamental method for simulating quantum chemical properties, but it remains expensive due to the iterative self-consistent field (SCF) process required to solve the Kohn-Sham equations. Recently, deep learning methods are gaining attention as a way to bypass this step by directly predicting the Hamiltonian. However, they rely on deterministic regression and do not consider the highly structured nature of Hamiltonians. In this work, we propose QHFlow, a high-order equivariant flow matching framework that generates Hamiltonian matrices conditioned on molecular geometry. Flow matching models continuous-time trajectories between simple priors and complex targets, learning the structured distributions over Hamiltonians instead of direct regression. To further incorporate symmetry, we use a neural architecture that predicts SE(3)-equivariant vector fields, improving accuracy and generalization across diverse geometries. To further enhance physical fidelity, we additionally introduce a fine-tuning scheme to align predicted orbital energies with the target. QHFlow achieves state-of-the-art performance, reducing Hamiltonian error by 71% on MD17 and 53% on QH9. Moreover, we further show that QHFlow accelerates the DFT process without trading off the solution quality when initializing SCF iterations with the predicted Hamiltonian, significantly reducing the number of iterations and runtime.
Via

May 22, 2025
Abstract:Masked diffusion models (MDMs) have achieved notable progress in modeling discrete data, while their potential in molecular generation remains underexplored. In this work, we explore their potential and introduce the surprising result that naively applying standards MDMs severely degrades the performance. We identify the critical cause of this issue as a state-clashing problem-where the forward diffusion of distinct molecules collapse into a common state, resulting in a mixture of reconstruction targets that cannot be learned using typical reverse diffusion process with unimodal predictions. To mitigate this, we propose Masked Element-wise Learnable Diffusion (MELD) that orchestrates per-element corruption trajectories to avoid collision between distinct molecular graphs. This is achieved through a parameterized noise scheduling network that assigns distinct corruption rates to individual graph elements, i.e., atoms and bonds. Extensive experiments on diverse molecular benchmarks reveal that MELD markedly enhances overall generation quality compared to element-agnostic noise scheduling, increasing the chemical validity of vanilla MDMs on ZINC250K from 15% to 93%, Furthermore, it achieves state-of-the-art property alignment in conditional generation tasks.
Via

May 17, 2025
Abstract:Accurate molecular property prediction (MPP) is a critical step in modern drug development. However, the scarcity of experimental validation data poses a significant challenge to AI-driven research paradigms. Under few-shot learning scenarios, the quality of molecular representations directly dictates the theoretical upper limit of model performance. We present AdaptMol, a prototypical network integrating Adaptive multimodal fusion for Molecular representation. This framework employs a dual-level attention mechanism to dynamically integrate global and local molecular features derived from two modalities: SMILES sequences and molecular graphs. (1) At the local level, structural features such as atomic interactions and substructures are extracted from molecular graphs, emphasizing fine-grained topological information; (2) At the global level, the SMILES sequence provides a holistic representation of the molecule. To validate the necessity of multimodal adaptive fusion, we propose an interpretable approach based on identifying molecular active substructures to demonstrate that multimodal adaptive fusion can efficiently represent molecules. Extensive experiments on three commonly used benchmarks under 5-shot and 10-shot settings demonstrate that AdaptMol achieves state-of-the-art performance in most cases. The rationale-extracted method guides the fusion of two modalities and highlights the importance of both modalities.
* 15 pages, 6 figures
Via

May 15, 2025
Abstract:Injecting rule-based models like Random Forests into differentiable neural network frameworks remains an open challenge in machine learning. Recent advancements have demonstrated that pretrained models can generate efficient molecular embeddings. However, these approaches often require extensive pretraining and additional techniques, such as incorporating posterior probabilities, to boost performance. In our study, we propose a novel strategy that jointly trains a single Graph Transformer neural network on both sparse multitask molecular property experimental targets and synthetic targets derived from XGBoost models trained on Osmordred molecular descriptors. These synthetic tasks serve as independent auxiliary tasks. Our results show consistent and significant performance improvement across all 19 molecular property prediction tasks. For 16 out of 19 targets, the multitask Graph Transformer outperforms the XGBoost single-task learner. This demonstrates that synthetic task augmentation is an effective method for enhancing neural model performance in multitask molecular property prediction without the need for feature injection or pretraining.
* 14 pages, 3 Figures, 6 tables
Via
