Molecular Property Prediction


Molecular property prediction is the process of predicting the properties of molecules using machine-learning models.

Foundation Molecular Grammar: Multi-Modal Foundation Models Induce Interpretable Molecular Graph Languages

Add code
May 29, 2025
Viaarxiv icon

Aligning Protein Conformation Ensemble Generation with Physical Feedback

Add code
May 30, 2025
Viaarxiv icon

Geometric Hyena Networks for Large-scale Equivariant Learning

Add code
May 28, 2025
Viaarxiv icon

B-XAIC Dataset: Benchmarking Explainable AI for Graph Neural Networks Using Chemical Data

Add code
May 28, 2025
Viaarxiv icon

Beyond Chemical QA: Evaluating LLM's Chemical Reasoning with Modular Chemical Operations

Add code
May 27, 2025
Viaarxiv icon

FlashMD: long-stride, universal prediction of molecular dynamics

Add code
May 25, 2025
Viaarxiv icon

High-order Equivariant Flow Matching for Density Functional Theory Hamiltonian Prediction

Add code
May 24, 2025
Viaarxiv icon

Learning Flexible Forward Trajectories for Masked Molecular Diffusion

Add code
May 22, 2025
Viaarxiv icon

AdaptMol: Adaptive Fusion from Sequence String to Topological Structure for Few-shot Drug Discovery

Add code
May 17, 2025
Viaarxiv icon

All You Need Is Synthetic Task Augmentation

Add code
May 15, 2025
Viaarxiv icon