While LLMs exhibit remarkable fluency, their utility is often compromised by factual hallucinations and a lack of traceable provenance. Existing resources for grounding mitigate this but typically enforce a dichotomy: they offer either structured knowledge without textual context (e.g., knowledge bases) or grounded text with limited scale and linguistic coverage. To bridge this gap, we introduce FactNet, a massive, open-source resource designed to unify 1.7 billion atomic assertions with 3.01 billion auditable evidence pointers derived exclusively from 316 Wikipedia editions. Unlike recent synthetic approaches, FactNet employs a strictly deterministic construction pipeline, ensuring that every evidence unit is recoverable with byte-level precision. Extensive auditing confirms a high grounding precision of 92.1%, even in long-tail languages. Furthermore, we establish FactNet-Bench, a comprehensive evaluation suite for Knowledge Graph Completion, Question Answering, and Fact Checking. FactNet provides the community with a foundational, reproducible resource for training and evaluating trustworthy, verifiable multilingual systems.
We introduce ontology-to-tools compilation as a proof-of-principle mechanism for coupling large language models (LLMs) with formal domain knowledge. Within The World Avatar (TWA), ontological specifications are compiled into executable tool interfaces that LLM-based agents must use to create and modify knowledge graph instances, enforcing semantic constraints during generation rather than through post-hoc validation. Extending TWA's semantic agent composition framework, the Model Context Protocol (MCP) and associated agents are integral components of the knowledge graph ecosystem, enabling structured interaction between generative models, symbolic constraints, and external resources. An agent-based workflow translates ontologies into ontology-aware tools and iteratively applies them to extract, validate, and repair structured knowledge from unstructured scientific text. Using metal-organic polyhedra synthesis literature as an illustrative case, we show how executable ontological semantics can guide LLM behaviour and reduce manual schema and prompt engineering, establishing a general paradigm for embedding formal knowledge into generative systems.
Agent memory systems must accommodate continuously growing information while supporting efficient, context-aware retrieval for downstream tasks. Abstraction is essential for scaling agent memory, yet it often comes at the cost of specificity, obscuring the fine-grained details required for effective reasoning. We introduce Memora, a harmonic memory representation that structurally balances abstraction and specificity. Memora organizes information via its primary abstractions that index concrete memory values and consolidate related updates into unified memory entries, while cue anchors expand retrieval access across diverse aspects of the memory and connect related memories. Building on this structure, we employ a retrieval policy that actively exploits these memory connections to retrieve relevant information beyond direct semantic similarity. Theoretically, we show that standard Retrieval-Augmented Generation (RAG) and Knowledge Graph (KG)-based memory systems emerge as special cases of our framework. Empirically, Memora establishes a new state-of-the-art on the LoCoMo and LongMemEval benchmarks, demonstrating better retrieval relevance and reasoning effectiveness as memory scales.
While Open Set Semantic Mapping and 3D Semantic Scene Graphs (3DSSGs) are established paradigms in robotic perception, deploying them effectively to support high-level reasoning in large-scale, real-world environments remains a significant challenge. Most existing approaches decouple perception from representation, treating the scene graph as a derivative layer generated post hoc. This limits both consistency and scalability. In contrast, we propose a mapping architecture where the 3DSSG serves as the foundational backend, acting as the primary knowledge representation for the entire mapping process. Our approach leverages prior work on incremental scene graph prediction to infer and update the graph structure in real-time as the environment is explored. This ensures that the map remains topologically consistent and computationally efficient, even during extended operations in large-scale settings. By maintaining an explicit, spatially grounded representation that supports both flat and hierarchical topologies, we bridge the gap between sub-symbolic raw sensor data and high-level symbolic reasoning. Consequently, this provides a stable, verifiable structure that knowledge-driven frameworks, ranging from knowledge graphs and ontologies to Large Language Models (LLMs), can directly exploit, enabling agents to operate with enhanced interpretability, trustworthiness, and alignment to human concepts.
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
Constructing domain-specific knowledge graphs from unstructured text remains challenging due to heterogeneous entity mentions, long-tail relation distributions, and the absence of standardized schemas. We present LEC-KG, a bidirectional collaborative framework that integrates the semantic understanding of Large Language Models (LLMs) with the structural reasoning of Knowledge Graph Embeddings (KGE). Our approach features three key components: (1) hierarchical coarse-to-fine relation extraction that mitigates long-tail bias, (2) evidence-guided Chain-of-Thought feedback that grounds structural suggestions in source text, and (3) semantic initialization that enables structural validation for unseen entities. The two modules enhance each other iteratively-KGE provides structure-aware feedback to refine LLM extractions, while validated triples progressively improve KGE representations. We evaluate LEC-KG on Chinese Sustainable Development Goal (SDG) reports, demonstrating substantial improvements over LLM baselines, particularly on low-frequency relations. Through iterative refinement, our framework reliably transforms unstructured policy text into validated knowledge graph triples.
Graph-based Retrieval-Augmented Generation (GraphRAG) organizes external knowledge as a hierarchical graph, enabling efficient retrieval and aggregation of scattered evidence across multiple documents. However, many existing benchmarks for GraphRAG rely on short, curated passages as external knowledge, failing to adequately evaluate systems in realistic settings involving long contexts and large-scale heterogeneous documents. To bridge this gap, we introduce WildGraphBench, a benchmark designed to assess GraphRAG performance in the wild. We leverage Wikipedia's unique structure, where cohesive narratives are grounded in long and heterogeneous external reference documents, to construct a benchmark reflecting real-word scenarios. Specifically, we sample articles across 12 top-level topics, using their external references as the retrieval corpus and citation-linked statements as ground truth, resulting in 1,100 questions spanning three levels of complexity: single-fact QA, multi-fact QA, and section-level summarization. Experiments across multiple baselines reveal that current GraphRAG pipelines help on multi-fact aggregation when evidence comes from a moderate number of sources, but this aggregation paradigm may overemphasize high-level statements at the expense of fine-grained details, leading to weaker performance on summarization tasks. Project page:https://github.com/BstWPY/WildGraphBench.
Conversational diagnosis requires multi-turn history-taking, where an agent asks clarifying questions to refine differential diagnoses under incomplete information. Existing approaches often rely on the parametric knowledge of a model or assume that patients provide rich and concrete information, which is unrealistic. To address these limitations, we propose a conversational diagnosis system that explores a diagnostic knowledge graph to reason in two steps: (i) generating diagnostic hypotheses from the dialogue context, and (ii) verifying hypotheses through clarifying questions, which are repeated until a final diagnosis is reached. Since evaluating the system requires a realistic patient simulator that responds to the system's questions, we adopt a well-established simulator along with patient profiles from MIMIC-IV. We further adapt it to describe symptoms vaguely to reflect real-world patients during early clinical encounters. Experiments show improved diagnostic accuracy and efficiency over strong baselines, and evaluations by physicians support the realism of our simulator and the clinical utility of the generated questions. Our code will be released upon publication.
Answering first-order logic (FOL) queries over incomplete knowledge graphs (KGs) is difficult, especially for complex query structures that compose projection, intersection, union, and negation. We propose ROG, a retrieval-augmented framework that combines query-aware neighborhood retrieval with large language model (LLM) chain-of-thought reasoning. ROG decomposes a multi-operator query into a sequence of single-operator sub-queries and grounds each step in compact, query-relevant neighborhood evidence. Intermediate answer sets are cached and reused across steps, improving consistency on deep reasoning chains. This design reduces compounding errors and yields more robust inference on complex and negation-heavy queries. Overall, ROG provides a practical alternative to embedding-based logical reasoning by replacing learned operators with retrieval-grounded, step-wise inference. Experiments on standard KG reasoning benchmarks show consistent gains over strong embedding-based baselines, with the largest improvements on high-complexity and negation-heavy query types.
Graph generative modelling has become an essential task due to the wide range of applications in chemistry, biology, social networks, and knowledge representation. In this work, we propose a novel framework for generating graphs by adapting the Generator Matching (arXiv:2410.20587) paradigm to graph-structured data. We leverage the graph Laplacian and its associated heat kernel to define a continous-time diffusion on each graph. The Laplacian serves as the infinitesimal generator of this diffusion, and its heat kernel provides a family of conditional perturbations of the initial graph. A neural network is trained to match this generator by minimising a Bregman divergence between the true generator and a learnable surrogate. Once trained, the surrogate generator is used to simulate a time-reversed diffusion process to sample new graph structures. Our framework unifies and generalises existing diffusion-based graph generative models, injecting domain-specific inductive bias via the Laplacian, while retaining the flexibility of neural approximators. Experimental studies demonstrate that our approach captures structural properties of real and synthetic graphs effectively.