What is Keyword Spotting? Keyword spotting (KWS) is an important technique for speech applications, which enables users to activate devices by speaking a keyword phrase.
Papers and Code
Jun 17, 2025
Abstract:Multi-channel keyword spotting (KWS) has become crucial for voice-based applications in edge environments. However, its substantial computational and energy requirements pose significant challenges. We introduce ASAP-FE (Agile Sparsity-Aware Parallelized-Feature Extractor), a hardware-oriented front-end designed to address these challenges. Our framework incorporates three key innovations: (1) Half-overlapped Infinite Impulse Response (IIR) Framing: This reduces redundant data by approximately 25% while maintaining essential phoneme transition cues. (2) Sparsity-aware Data Reduction: We exploit frame-level sparsity to achieve an additional 50% data reduction by combining frame skipping with stride-based filtering. (3) Dynamic Parallel Processing: We introduce a parameterizable filter cluster and a priority-based scheduling algorithm that allows parallel execution of IIR filtering tasks, reducing latency and optimizing energy efficiency. ASAP-FE is implemented with various filter cluster sizes on edge processors, with functionality verified on FPGA prototypes and designs synthesized at 45 nm. Experimental results using TC-ResNet8, DS-CNN, and KWT-1 demonstrate that ASAP-FE reduces the average workload by 62.73% while supporting real-time processing for up to 32 channels. Compared to a conventional fully overlapped baseline, ASAP-FE achieves less than a 1% accuracy drop (e.g., 96.22% vs. 97.13% for DS-CNN), which is well within acceptable limits for edge AI. By adjusting the number of filter modules, our design optimizes the trade-off between performance and energy, with 15 parallel filters providing optimal performance for up to 25 channels. Overall, ASAP-FE offers a practical and efficient solution for multi-channel KWS on energy-constrained edge devices.
* 7 pages, 11 figures, ISLPED 2025
Via

Jun 12, 2025
Abstract:Small-Footprint Keyword Spotting (SF-KWS) has gained popularity in today's landscape of smart voice-activated devices, smartphones, and Internet of Things (IoT) applications. This surge is attributed to the advancements in Deep Learning, enabling the identification of predefined words or keywords from a continuous stream of words. To implement the SF-KWS model on edge devices with low power and limited memory in real-world scenarios, a efficient Tiny Machine Learning (TinyML) framework is essential. In this study, we explore seven distinct categories of techniques namely, Model Architecture, Learning Techniques, Model Compression, Attention Awareness Architecture, Feature Optimization, Neural Network Search, and Hybrid Approaches, which are suitable for developing an SF-KWS system. This comprehensive overview will serve as a valuable resource for those looking to understand, utilize, or contribute to the field of SF-KWS. The analysis conducted in this work enables the identification of numerous potential research directions, encompassing insights from automatic speech recognition research and those specifically pertinent to the realm of spoken SF-KWS.
* 61 pages, 21 figures
Via

Jun 12, 2025
Abstract:Contrastive Language Audio Pretraining (CLAP) is a widely-used method to bridge the gap between audio and text domains. Current CLAP methods enable sound and music retrieval in English, ignoring multilingual spoken content. To address this, we introduce general language audio pretraining (GLAP), which expands CLAP with multilingual and multi-domain abilities. GLAP demonstrates its versatility by achieving competitive performance on standard audio-text retrieval benchmarks like Clotho and AudioCaps, while significantly surpassing existing methods in speech retrieval and classification tasks. Additionally, GLAP achieves strong results on widely used sound-event zero-shot benchmarks, while simultaneously outperforming previous methods on speech content benchmarks. Further keyword spotting evaluations across 50 languages emphasize GLAP's advanced multilingual capabilities. Finally, multilingual sound and music understanding is evaluated across four languages. Checkpoints and Source: https://github.com/xiaomi-research/dasheng-glap.
Via

Jun 10, 2025
Abstract:This paper presents a keyword spotting (KWS) system implemented on the NXP MCXN947 microcontroller with an integrated Neural Processing Unit (NPU), enabling real-time voice interaction on resource-constrained devices. The system combines MFCC feature extraction with a CNN classifier, optimized using Quantization Aware Training to reduce model size with minimal accuracy drop. Experimental results demonstrate a 59x speedup in inference time when leveraging the NPU compared to CPU-only execution, achieving 97.06% accuracy with a model size of 30.58 KB, demonstrating the feasibility of efficient, low-power voice interfaces on embedded platforms.
* 4 pages
Via

Jun 10, 2025
Abstract:Deep speech classification tasks, including keyword spotting and speaker verification, are vital in speech-based human-computer interaction. Recently, the security of these technologies has been revealed to be susceptible to backdoor attacks. Specifically, attackers use noisy disruption triggers and speech element triggers to produce poisoned speech samples that train models to become vulnerable. However, these methods typically create only a limited number of backdoors due to the inherent constraints of the trigger function. In this paper, we propose that speech backdoor attacks can strategically focus on speech elements such as timbre and emotion, leveraging the Speech Large Language Model (SLLM) to generate diverse triggers. Increasing the number of triggers may disproportionately elevate the poisoning rate, resulting in higher attack costs and a lower success rate per trigger. We introduce the Multiple Gradient Descent Algorithm (MGDA) as a mitigation strategy to address this challenge. The proposed attack is called the Speech Prompt Backdoor Attack (SPBA). Building on this foundation, we conducted attack experiments on two speech classification tasks, demonstrating that SPBA shows significant trigger effectiveness and achieves exceptional performance in attack metrics.
* Accepted by IJCNN 2025
Via

Jun 09, 2025
Abstract:The smart home systems, based on AI speech recognition and IoT technology, enable people to control devices through verbal commands and make people's lives more efficient. However, existing AI speech recognition services are primarily deployed on cloud platforms on the Internet. When users issue a command, speech recognition devices like ``Amazon Echo'' will post a recording through numerous network nodes, reach multiple servers, and then receive responses through the Internet. This mechanism presents several issues, including unnecessary energy consumption, communication latency, and the risk of a single-point failure. In this position paper, we propose a smart home concept based on offline speech recognition and IoT technology: 1) integrating offline keyword spotting (KWS) technologies into household appliances with limited resource hardware to enable them to understand user voice commands; 2) designing a local IoT network with decentralized architecture to manage and connect various devices, enhancing the robustness and scalability of the system. This proposal of a smart home based on offline speech recognition and IoT technology will allow users to use low-latency voice control anywhere in the home without depending on the Internet and provide better scalability and energy sustainability.
Via

May 30, 2025
Abstract:RNN-T-based keyword spotting (KWS) with autoregressive decoding~(AR) has gained attention due to its streaming architecture and superior performance. However, the simplicity of the prediction network in RNN-T poses an overfitting issue, especially under challenging scenarios, resulting in degraded performance. In this paper, we propose a masked self-distillation (MSD) training strategy that avoids RNN-Ts overly relying on prediction networks to alleviate overfitting. Such training enables masked non-autoregressive (NAR) decoding, which fully masks the RNN-T predictor output during KWS decoding. In addition, we propose a semi-autoregressive (SAR) decoding approach to integrate the advantages of AR and NAR decoding. Our experiments across multiple KWS datasets demonstrate that MSD training effectively alleviates overfitting. The SAR decoding method preserves the superior performance of AR decoding while benefits from the overfitting suppression of NAR decoding, achieving excellent results.
Via

May 29, 2025
Abstract:Custom keyword spotting (KWS) allows detecting user-defined spoken keywords from streaming audio. This is achieved by comparing the embeddings from voice enrollments and input audio. State-of-the-art custom KWS models are typically trained contrastively using utterances whose keywords are randomly sampled from training dataset. These KWS models often struggle with confusing keywords, such as "blue" versus "glue". This paper introduces an effective way to augment the training with confusable utterances where keywords are generated and grouped from large language models (LLMs), and speech signals are synthesized with diverse speaking styles from text-to-speech (TTS) engines. To better measure user experience on confusable KWS, we define a new northstar metric using the average area under DET curve from confusable groups (c-AUC). Featuring high scalability and zero labor cost, the proposed method improves AUC by 3.7% and c-AUC by 11.3% on the Speech Commands testing set.
Via

May 30, 2025
Abstract:On-device learning at the edge enables low-latency, private personalization with improved long-term robustness and reduced maintenance costs. Yet, achieving scalable, low-power end-to-end on-chip learning, especially from real-world sequential data with a limited number of examples, is an open challenge. Indeed, accelerators supporting error backpropagation optimize for learning performance at the expense of inference efficiency, while simplified learning algorithms often fail to reach acceptable accuracy targets. In this work, we present Chameleon, leveraging three key contributions to solve these challenges. (i) A unified learning and inference architecture supports few-shot learning (FSL), continual learning (CL) and inference at only 0.5% area overhead to the inference logic. (ii) Long temporal dependencies are efficiently captured with temporal convolutional networks (TCNs), enabling the first demonstration of end-to-end on-chip FSL and CL on sequential data and inference on 16-kHz raw audio. (iii) A dual-mode, matrix-multiplication-free compute array allows either matching the power consumption of state-of-the-art inference-only keyword spotting (KWS) accelerators or enabling $4.3\times$ higher peak GOPS. Fabricated in 40-nm CMOS, Chameleon sets new accuracy records on Omniglot for end-to-end on-chip FSL (96.8%, 5-way 1-shot, 98.8%, 5-way 5-shot) and CL (82.2% final accuracy for learning 250 classes with 10 shots), while maintaining an inference accuracy of 93.3% on the 12-class Google Speech Commands dataset at an extreme-edge power budget of 3.1 $\mu$W.
* 14 pages, 7 figures
Via

May 26, 2025
Abstract:Keyword spotting (KWS) is essential for voice-driven applications, demanding both accuracy and efficiency. Traditional ASR-based KWS methods, such as greedy and beam search, explore the entire search space without explicitly prioritizing keyword detection, often leading to suboptimal performance. In this paper, we propose an effective keyword-specific KWS framework by introducing a streaming-oriented CTC-Transducer-combined frame-asynchronous system with multi-head frame-asynchronous decoding (MFA-KWS). Specifically, MFA-KWS employs keyword-specific phone-synchronous decoding for CTC and replaces conventional RNN-T with Token-and-Duration Transducer to enhance both performance and efficiency. Furthermore, we explore various score fusion strategies, including single-frame-based and consistency-based methods. Extensive experiments demonstrate the superior performance of MFA-KWS, which achieves state-of-the-art results on both fixed keyword and arbitrary keywords datasets, such as Snips, MobvoiHotwords, and LibriKWS-20, while exhibiting strong robustness in noisy environments. Among fusion strategies, the consistency-based CDC-Last method delivers the best performance. Additionally, MFA-KWS achieves a 47% to 63% speed-up over the frame-synchronous baselines across various datasets. Extensive experimental results confirm that MFA-KWS is an effective and efficient KWS framework, making it well-suited for on-device deployment.
* TASLP under review
Via
