Keyword Spotting


Keyword spotting (KWS) is an important technique for speech applications, which enables users to activate devices by speaking a keyword phrase.

ASAP-FE: Energy-Efficient Feature Extraction Enabling Multi-Channel Keyword Spotting on Edge Processors

Add code
Jun 17, 2025
Viaarxiv icon

Advances in Small-Footprint Keyword Spotting: A Comprehensive Review of Efficient Models and Algorithms

Add code
Jun 12, 2025
Viaarxiv icon

GLAP: General contrastive audio-text pretraining across domains and languages

Add code
Jun 12, 2025
Viaarxiv icon

Implementing Keyword Spotting on the MCUX947 Microcontroller with Integrated NPU

Add code
Jun 10, 2025
Viaarxiv icon

SPBA: Utilizing Speech Large Language Model for Backdoor Attacks on Speech Classification Models

Add code
Jun 10, 2025
Viaarxiv icon

Towards Energy-Efficient and Low-Latency Voice-Controlled Smart Homes: A Proposal for Offline Speech Recognition and IoT Integration

Add code
Jun 09, 2025
Viaarxiv icon

Masked Self-distilled Transducer-based Keyword Spotting with Semi-autoregressive Decoding

Add code
May 30, 2025
Viaarxiv icon

LLM-Synth4KWS: Scalable Automatic Generation and Synthesis of Confusable Data for Custom Keyword Spotting

Add code
May 29, 2025
Viaarxiv icon

Chameleon: A MatMul-Free Temporal Convolutional Network Accelerator for End-to-End Few-Shot and Continual Learning from Sequential Data

Add code
May 30, 2025
Viaarxiv icon

MFA-KWS: Effective Keyword Spotting with Multi-head Frame-asynchronous Decoding

Add code
May 26, 2025
Viaarxiv icon