3D visual grounding (3DVG) aims to localize objects in a 3D scene based on natural language queries. In this work, we explore zero-shot 3DVG from multi-view images alone, without requiring any geometric supervision or object priors. We introduce Z3D, a universal grounding pipeline that flexibly operates on multi-view images while optionally incorporating camera poses and depth maps. We identify key bottlenecks in prior zero-shot methods causing significant performance degradation and address them with (i) a state-of-the-art zero-shot 3D instance segmentation method to generate high-quality 3D bounding box proposals and (ii) advanced reasoning via prompt-based segmentation, which utilizes full capabilities of modern VLMs. Extensive experiments on the ScanRefer and Nr3D benchmarks demonstrate that our approach achieves state-of-the-art performance among zero-shot methods. Code is available at https://github.com/col14m/z3d .
Chimeric antigen receptor (CAR)-T and NK cell immunotherapies have transformed cancer treatment, and recent studies suggest that the quality of the CAR-T/NK cell immunological synapse (IS) may serve as a functional biomarker for predicting therapeutic efficacy. Accurate detection and segmentation of CAR-T/NK IS structures using artificial neural networks (ANNs) can greatly increase the speed and reliability of IS quantification. However, a persistent challenge is the limited size of annotated microscopy datasets, which restricts the ability of ANNs to generalize. To address this challenge, we integrate two complementary data-augmentation frameworks. First, we employ Instance Aware Automatic Augmentation (IAAA), an automated, instance-preserving augmentation method that generates synthetic CAR-T/NK IS images and corresponding segmentation masks by applying optimized augmentation policies to original IS data. IAAA supports multiple imaging modalities (e.g., fluorescence and brightfield) and can be applied directly to CAR-T/NK IS images derived from patient samples. In parallel, we introduce a Semantic-Aware AI Augmentation (SAAA) pipeline that combines a diffusion-based mask generator with a Pix2Pix conditional image synthesizer. This second method enables the creation of diverse, anatomically realistic segmentation masks and produces high-fidelity CAR-T/NK IS images aligned with those masks, further expanding the training corpus beyond what IAAA alone can provide. Together, these augmentation strategies generate synthetic images whose visual and structural properties closely match real IS data, significantly improving CAR-T/NK IS detection and segmentation performance. By enhancing the robustness and accuracy of IS quantification, this work supports the development of more reliable imaging-based biomarkers for predicting patient response to CAR-T/NK immunotherapy.
Semantic segmentation networks, which are essential for robotic perception, often suffer from performance degradation when the visual distribution of the deployment environment differs from that of the source dataset on which they were trained. Unsupervised Domain Adaptation (UDA) addresses this challenge by adapting the network to the robot's target environment without external supervision, leveraging the large amounts of data a robot might naturally collect during long-term operation. In such settings, UDA methods can exploit multi-view consistency across the environment's map to fine-tune the model in an unsupervised fashion and mitigate domain shift. However, these approaches remain sensitive to cross-view instance-level inconsistencies. In this work, we propose a method that starts from a volumetric 3D map to generate multi-view consistent pseudo-labels. We then refine these labels using the zero-shot instance segmentation capabilities of a foundation model, enforcing instance-level coherence. The refined annotations serve as supervision for self-supervised fine-tuning, enabling the robot to adapt its perception system at deployment time. Experiments on real-world data demonstrate that our approach consistently improves performance over state-of-the-art UDA baselines based on multi-view consistency, without requiring any ground-truth labels in the target domain.
3D Gaussian Splatting (GS) enables fast and high-quality scene reconstruction, but it lacks an object-consistent and semantically aware structure. We propose Split&Splat, a framework for panoptic scene reconstruction using 3DGS. Our approach explicitly models object instances. It first propagates instance masks across views using depth, thus producing view-consistent 2D masks. Each object is then reconstructed independently and merged back into the scene while refining its boundaries. Finally, instance-level semantic descriptors are embedded in the reconstructed objects, supporting various applications, including panoptic segmentation, object retrieval, and 3D editing. Unlike existing methods, Split&Splat tackles the problem by first segmenting the scene and then reconstructing each object individually. This design naturally supports downstream tasks and allows Split&Splat to achieve state-of-the-art performance on the ScanNetv2 segmentation benchmark.
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
Individual tree crown segmentation is an important task in remote sensing for forest biomass estimation and ecological monitoring. However, accurate delineation in dense, overlapping canopies remains a bottleneck. While supervised deep learning methods suffer from high annotation costs and limited generalization, emerging foundation models (e.g., Segment Anything Model) often lack domain knowledge, leading to under-segmentation in dense clusters. To bridge this gap, we propose ZS-TreeSeg, a Zero-Shot framework that adapts from two mature tasks: 1) Canopy Semantic segmentation; and 2) Cells instance segmentation. By modeling tree crowns as star-convex objects within a topological flow field using Cellpose-SAM, the ZS-TreeSeg framework forces the mathematical separation of touching tree crown instances based on vector convergence. Experiments on the NEON and BAMFOREST datasets and visual inspection demonstrate that our framework generalizes robustly across diverse sensor types and canopy densities, which can offer a training-free solution for tree crown instance segmentation and labels generation.
Sorghum is a globally important cereal grown widely in water-limited and stress-prone regions. Its strong drought tolerance makes it a priority crop for climate-resilient agriculture. Improving water-use efficiency in sorghum requires precise characterisation of stomatal traits, as stomata control of gas exchange, transpiration and photosynthesis have a major influence on crop performance. Automated analysis of sorghum stomata is difficult because the stomata are small (often less than 40 $μ$m in length in grasses such as sorghum) and vary in shape across genotypes and leaf surfaces. Automated segmentation contributes to high-throughput stomatal phenotyping, yet current methods still face challenges related to nested small structures and annotation bottlenecks. In this paper, we propose a semi-supervised instance segmentation framework tailored for analysis of sorghum stomatal components. We collect and annotate a sorghum leaf imagery dataset containing 11,060 human-annotated patches, covering the three stomatal components (pore, guard cell and complex area) across multiple genotypes and leaf surfaces. To improve the detection of tiny structures, we split high-resolution microscopy images into overlapping small patches. We then apply a pseudo-labelling strategy to unannotated images, producing an additional 56,428 pseudo-labelled patches. Benchmarking across semantic and instance segmentation models shows substantial performance gains: for semantic models the top mIoU increases from 65.93% to 70.35%, whereas for instance models the top AP rises from 28.30% to 46.10%. These results demonstrate that combining patch-based preprocessing with semi-supervised learning significantly improves the segmentation of fine stomatal structures. The proposed framework supports scalable extraction of stomatal traits and facilitates broader adoption of AI-driven phenotyping in crop science.
Coronary artery stenosis is a leading cause of cardiovascular disease, diagnosed by analyzing the coronary arteries from multiple angiography views. Although numerous deep-learning models have been proposed for stenosis detection from a single angiography view, their performance heavily relies on expensive view-level annotations, which are often not readily available in hospital systems. Moreover, these models fail to capture the temporal dynamics and dependencies among multiple views, which are crucial for clinical diagnosis. To address this, we propose SegmentMIL, a transformer-based multi-view multiple-instance learning framework for patient-level stenosis classification. Trained on a real-world clinical dataset, using patient-level supervision and without any view-level annotations, SegmentMIL jointly predicts the presence of stenosis and localizes the affected anatomical region, distinguishing between the right and left coronary arteries and their respective segments. SegmentMIL obtains high performance on internal and external evaluations and outperforms both view-level models and classical MIL baselines, underscoring its potential as a clinically viable and scalable solution for coronary stenosis diagnosis. Our code is available at https://github.com/NikolaCenic/mil-stenosis.
Scene understanding with free-form language has been widely explored within diverse modalities such as images, point clouds, and LiDAR. However, related studies on event sensors are scarce or narrowly centered on semantic-level understanding. We introduce SEAL, the first Semantic-aware Segment Any Events framework that addresses Open-Vocabulary Event Instance Segmentation (OV-EIS). Given the visual prompt, our model presents a unified framework to support both event segmentation and open-vocabulary mask classification at multiple levels of granularity, including instance-level and part-level. To enable thorough evaluation on OV-EIS, we curate four benchmarks that cover label granularity from coarse to fine class configurations and semantic granularity from instance-level to part-level understanding. Extensive experiments show that our SEAL largely outperforms proposed baselines in terms of performance and inference speed with a parameter-efficient architecture. In the Appendix, we further present a simple variant of our SEAL achieving generic spatiotemporal OV-EIS that does not require any visual prompts from users in the inference. Check out our project page in https://0nandon.github.io/SEAL
Open-vocabulary grounding requires accurate vision-language alignment under weak supervision, yet existing methods either rely on global sentence embeddings that lack fine-grained expressiveness or introduce token-level alignment with explicit supervision or heavy cross-attention designs. We propose ExpAlign, a theoretically grounded vision-language alignment framework built on a principled multiple instance learning formulation. ExpAlign introduces an Expectation Alignment Head that performs attention-based soft MIL pooling over token-region similarities, enabling implicit token and instance selection without additional annotations. To further stabilize alignment learning, we develop an energy-based multi-scale consistency regularization scheme, including a Top-K multi-positive contrastive objective and a Geometry-Aware Consistency Objective derived from a Lagrangian-constrained free-energy minimization. Extensive experiments show that ExpAlign consistently improves open-vocabulary detection and zero-shot instance segmentation, particularly on long-tail categories. Most notably, it achieves 36.2 AP$_r$ on the LVIS minival split, outperforming other state-of-the-art methods at comparable model scale, while remaining lightweight and inference-efficient.