What is Image Denoising? Image denoising is the process of removing noise from images to improve their quality.
Papers and Code
May 05, 2025
Abstract:Image denoising is essential in low-level vision applications such as photography and automated driving. Existing methods struggle with distinguishing complex noise patterns in real-world scenes and consume significant computational resources due to reliance on Transformer-based models. In this work, the Context-guided Receptance Weighted Key-Value (\M) model is proposed, combining enhanced multi-view feature integration with efficient sequence modeling. Our approach introduces the Context-guided Token Shift (CTS) paradigm, which effectively captures local spatial dependencies and enhance the model's ability to model real-world noise distributions. Additionally, the Frequency Mix (FMix) module extracting frequency-domain features is designed to isolate noise in high-frequency spectra, and is integrated with spatial representations through a multi-view learning process. To improve computational efficiency, the Bidirectional WKV (BiWKV) mechanism is adopted, enabling full pixel-sequence interaction with linear complexity while overcoming the causal selection constraints. The model is validated on multiple real-world image denoising datasets, outperforming the existing state-of-the-art methods quantitatively and reducing inference time up to 40\%. Qualitative results further demonstrate the ability of our model to restore fine details in various scenes.
* Accepted by IJCAI 2025, code will be available at
https://github.com/Seeker98/CRWKV
Via

May 05, 2025
Abstract:Studying the growth and metabolism of microbes provides critical insights into their evolutionary adaptations to harsh environments, which are essential for microbial research and biotechnology applications. In this study, we developed an AI-driven image analysis system to efficiently segment individual cells and quantitatively analyze key cellular features. This system is comprised of four main modules. First, a denoising algorithm enhances contrast and suppresses noise while preserving fine cellular details. Second, the Segment Anything Model (SAM) enables accurate, zero-shot segmentation of cells without additional training. Third, post-processing is applied to refine segmentation results by removing over-segmented masks. Finally, quantitative analysis algorithms extract essential cellular features, including average intensity, length, width, and volume. The results show that denoising and post-processing significantly improved the segmentation accuracy of SAM in this new domain. Without human annotations, the AI-driven pipeline automatically and efficiently outlines cellular boundaries, indexes them, and calculates key cellular parameters with high accuracy. This framework will enable efficient and automated quantitative analysis of high-resolution fluorescence microscopy images to advance research into microbial adaptations to grow and metabolism that allow extremophiles to thrive in their harsh habitats.
Via

May 05, 2025
Abstract:Image Super-Resolution is a fundamental problem in computer vision with broad applications spacing from medical imaging to satellite analysis. The ability to reconstruct high-resolution images from low-resolution inputs is crucial for enhancing downstream tasks such as object detection and segmentation. While deep learning has significantly advanced SR, achieving high-quality reconstructions with fine-grained details and realistic textures remains challenging, particularly at high upscaling factors. Recent approaches leveraging diffusion models have demonstrated promising results, yet they often struggle to balance perceptual quality with structural fidelity. In this work, we introduce ResQu a novel SR framework that integrates a quaternion wavelet preprocessing framework with latent diffusion models, incorporating a new quaternion wavelet- and time-aware encoder. Unlike prior methods that simply apply wavelet transforms within diffusion models, our approach enhances the conditioning process by exploiting quaternion wavelet embeddings, which are dynamically integrated at different stages of denoising. Furthermore, we also leverage the generative priors of foundation models such as Stable Diffusion. Extensive experiments on domain-specific datasets demonstrate that our method achieves outstanding SR results, outperforming in many cases existing approaches in perceptual quality and standard evaluation metrics. The code will be available after the revision process.
* Accepted for presentation at IJCNN 2025
Via

May 04, 2025
Abstract:The acquisition of information-rich images within a limited time budget is crucial in medical imaging. Medical image translation (MIT) can help enhance and supplement existing datasets by generating synthetic images from acquired data. While Generative Adversarial Nets (GANs) and Diffusion Models (DMs) have achieved remarkable success in natural image generation, their benefits - creativity and image realism - do not necessarily transfer to medical applications where highly accurate anatomical information is required. In fact, the imitation of acquisition noise or content hallucination hinder clinical utility. Here, we introduce YODA (You Only Denoise once - or Average), a novel 2.5D diffusion-based framework for volumetric MIT. YODA unites diffusion and regression paradigms to produce realistic or noise-free outputs. Furthermore, we propose Expectation-Approximation (ExpA) DM sampling, which draws inspiration from MRI signal averaging. ExpA-sampling suppresses generated noise and, thus, eliminates noise from biasing the evaluation of image quality. Through extensive experiments on four diverse multi-modal datasets - comprising multi-contrast brain MRI and pelvic MRI-CT - we show that diffusion and regression sampling yield similar results in practice. As such, the computational overhead of diffusion sampling does not provide systematic benefits in medical information translation. Building on these insights, we demonstrate that YODA outperforms several state-of-the-art GAN and DM methods. Notably, YODA-generated images are shown to be interchangeable with, or even superior to, physical acquisitions for several downstream tasks. Our findings challenge the presumed advantages of DMs in MIT and pave the way for the practical application of MIT in medical imaging.
Via

May 02, 2025
Abstract:Edge detection is crucial in image processing, but existing methods often produce overly detailed edge maps, affecting clarity. Fixed-window statistical testing faces issues like scale mismatch and computational redundancy. To address these, we propose a novel Multi-scale Adaptive Independence Testing-based Edge Detection and Denoising (EDD-MAIT), a Multi-scale Adaptive Statistical Testing-based edge detection and denoising method that integrates a channel attention mechanism with independence testing. A gradient-driven adaptive window strategy adjusts window sizes dynamically, improving detail preservation and noise suppression. EDD-MAIT achieves better robustness, accuracy, and efficiency, outperforming traditional and learning-based methods on BSDS500 and BIPED datasets, with improvements in F-score, MSE, PSNR, and reduced runtime. It also shows robustness against Gaussian noise, generating accurate and clean edge maps in noisy environments.
Via

Apr 30, 2025
Abstract:Noise synthesis is a promising solution for addressing the data shortage problem in data-driven low-light RAW image denoising. However, accurate noise synthesis methods often necessitate labor-intensive calibration and profiling procedures during preparation, preventing them from landing to practice at scale. This work introduces a practically simple noise synthesis pipeline based on detailed analyses of noise properties and extensive justification of widespread techniques. Compared to other approaches, our proposed pipeline eliminates the cumbersome system gain calibration and signal-independent noise profiling steps, reducing the preparation time for noise synthesis from days to hours. Meanwhile, our method exhibits strong denoising performance, showing an up to 0.54dB PSNR improvement over the current state-of-the-art noise synthesis technique. Code is released at https://github.com/SonyResearch/raw_image_denoising
Via

May 01, 2025
Abstract:Studying the growth and metabolism of microbes provides critical insights into their evolutionary adaptations to harsh environments, which are essential for microbial research and biotechnology applications. In this study, we developed an AI-driven image analysis system to efficiently segment individual cells and quantitatively analyze key cellular features. This system is comprised of four main modules. First, a denoising algorithm enhances contrast and suppresses noise while preserving fine cellular details. Second, the Segment Anything Model (SAM) enables accurate, zero-shot segmentation of cells without additional training. Third, post-processing is applied to refine segmentation results by removing over-segmented masks. Finally, quantitative analysis algorithms extract essential cellular features, including average intensity, length, width, and volume. The results show that denoising and post-processing significantly improved the segmentation accuracy of SAM in this new domain. Without human annotations, the AI-driven pipeline automatically and efficiently outlines cellular boundaries, indexes them, and calculates key cellular parameters with high accuracy. This framework will enable efficient and automated quantitative analysis of high-resolution fluorescence microscopy images to advance research into microbial adaptations to grow and metabolism that allow extremophiles to thrive in their harsh habitats.
Via

May 01, 2025
Abstract:Diffusion-based visuomotor policies generate robot motions by learning to denoise action-space trajectories conditioned on observations. These observations are commonly streams of RGB images, whose high dimensionality includes substantial task-irrelevant information, requiring large models to extract relevant patterns. In contrast, using more structured observations, such as the spatial poses (positions and orientations) of key objects over time, enables training more compact policies that can recognize relevant patterns with fewer parameters. However, obtaining accurate object poses in open-set, real-world environments remains challenging. For instance, it is impractical to assume that all relevant objects are equipped with markers, and recent learning-based 6D pose estimation and tracking methods often depend on pre-scanned object meshes, requiring manual reconstruction. In this work, we propose PRISM-DP, an approach that leverages segmentation, mesh generation, pose estimation, and pose tracking models to enable compact diffusion policy learning directly from the spatial poses of task-relevant objects. Crucially, because PRISM-DP uses a mesh generation model, it eliminates the need for manual mesh processing or creation, improving scalability and usability in open-set, real-world environments. Experiments across a range of tasks in both simulation and real-world settings show that PRISM-DP outperforms high-dimensional image-based diffusion policies and achieves performance comparable to policies trained with ground-truth state information. We conclude with a discussion of the broader implications and limitations of our approach.
Via

Apr 30, 2025
Abstract:Due to the domain gap between real-world and synthetic hazy images, current data-driven dehazing algorithms trained on synthetic datasets perform well on synthetic data but struggle to generalize to real-world scenarios. To address this challenge, we propose \textbf{I}mage \textbf{D}ehazing \textbf{D}iffusion \textbf{M}odels (IDDM), a novel diffusion process that incorporates the atmospheric scattering model into noise diffusion. IDDM aims to use the gradual haze formation process to help the denoising Unet robustly learn the distribution of clear images from the conditional input hazy images. We design a specialized training strategy centered around IDDM. Diffusion models are leveraged to bridge the domain gap from synthetic to real-world, while the atmospheric scattering model provides physical guidance for haze formation. During the forward process, IDDM simultaneously introduces haze and noise into clear images, and then robustly separates them during the sampling process. By training with physics-guided information, IDDM shows the ability of domain generalization, and effectively restores the real-world hazy images despite being trained on synthetic datasets. Extensive experiments demonstrate the effectiveness of our method through both quantitative and qualitative comparisons with state-of-the-art approaches.
Via

Apr 30, 2025
Abstract:Image inpainting is a fundamental research area between image editing and image generation. Recent state-of-the-art (SOTA) methods have explored novel attention mechanisms, lightweight architectures, and context-aware modeling, demonstrating impressive performance. However, they often struggle with complex structure (e.g., texture, shape, spatial relations) and semantics (e.g., color consistency, object restoration, and logical correctness), leading to artifacts and inappropriate generation. To address this challenge, we design a simple yet effective inpainting paradigm called latent categories guidance, and further propose a diffusion-based model named PixelHacker. Specifically, we first construct a large dataset containing 14 million image-mask pairs by annotating foreground and background (potential 116 and 21 categories, respectively). Then, we encode potential foreground and background representations separately through two fixed-size embeddings, and intermittently inject these features into the denoising process via linear attention. Finally, by pre-training on our dataset and fine-tuning on open-source benchmarks, we obtain PixelHacker. Extensive experiments show that PixelHacker comprehensively outperforms the SOTA on a wide range of datasets (Places2, CelebA-HQ, and FFHQ) and exhibits remarkable consistency in both structure and semantics. Project page at https://hustvl.github.io/PixelHacker.
Via
