Abstract:Endoscopes featuring a miniaturized design have significantly enhanced operational flexibility, portability, and diagnostic capability while substantially reducing the invasiveness of medical procedures. Recently, single-use endoscopes equipped with an ultra-compact analogue image sensor measuring less than 1mm x 1mm bring revolutionary advancements to medical diagnosis. They reduce the structural redundancy and large capital expenditures associated with reusable devices, eliminate the risk of patient infections caused by inadequate disinfection, and alleviate patient suffering. However, the limited photosensitive area results in reduced photon capture per pixel, requiring higher photon sensitivity settings to maintain adequate brightness. In high-contrast medical imaging scenarios, the small-sized sensor exhibits a constrained dynamic range, making it difficult to simultaneously capture details in both highlights and shadows, and additional localized digital gain is required to compensate. Moreover, the simplified circuit design and analog signal transmission introduce additional noise sources. These factors collectively contribute to significant noise issues in processed endoscopic images. In this work, we developed a comprehensive noise model for analog image sensors in medical endoscopes, addressing three primary noise types: fixed-pattern noise, periodic banding noise, and mixed Poisson-Gaussian noise. Building on this analysis, we propose a hybrid denoising system that synergistically combines traditional image processing algorithms with advanced learning-based techniques for captured raw frames from sensors. Experiments demonstrate that our approach effectively reduces image noise without fine detail loss or color distortion, while achieving real-time performance on FPGA platforms and an average PSNR improvement from 21.16 to 33.05 on our test dataset.