Topic:Hyperspectral Image Classification
What is Hyperspectral Image Classification? Hyperspectral image classification is a task in the field of remote sensing and computer vision. It involves the classification of pixels in hyperspectral images into different classes based on their spectral signature. Hyperspectral images contain information about the reflectance of objects in hundreds of narrow, contiguous wavelength bands, making them useful for a wide range of applications, including mineral mapping, vegetation analysis, and urban land use mapping. The goal of this task is to accurately identify and classify different types of objects in the image, such as soil, vegetation, water, and buildings, based on their spectral properties.
Papers and Code
Apr 29, 2025
Abstract:The Mamba model has recently demonstrated strong potential in hyperspectral image (HSI) classification, owing to its ability to perform context modeling with linear computational complexity. However, existing Mamba-based methods usually neglect the spectral and spatial directional characteristics related to heterogeneous objects in hyperspectral scenes, leading to limited classification performance. To address these issues, we propose MambaMoE, a novel spectral-spatial mixture-of-experts framework, representing the first MoE-based approach in the HSI classification community. Specifically, we design a Mixture of Mamba Expert Block (MoMEB) that leverages sparse expert activation to enable adaptive spectral-spatial modeling. Furthermore, we introduce an uncertainty-guided corrective learning (UGCL) strategy to encourage the model's attention toward complex regions prone to prediction ambiguity. Extensive experiments on multiple public HSI benchmarks demonstrate that MambaMoE achieves state-of-the-art performance in both accuracy and efficiency compared to existing advanced approaches, especially for Mamba-based methods. Code will be released.
Via

Apr 27, 2025
Abstract:Convolutional neural networks (CNNs) are effective for hyperspectral image (HSI) classification, but their 3D convolutional structures introduce high computational costs and limited generalization in few-shot scenarios. Domain shifts caused by sensor differences and environmental variations further hinder cross-dataset adaptability. Metric-based few-shot learning (FSL) prototype networks mitigate this problem, yet their performance is sensitive to prototype quality, especially with limited samples. To overcome these challenges, a dual-branch residual network that integrates spatial and spectral features via parallel branches is proposed in this letter. Additionally, more robust refined prototypes are obtained through a regulation term. Furthermore, a kernel probability matching strategy aligns source and target domain features, alleviating domain shift. Experiments on four publicly available HSI datasets illustrate that the proposal achieves superior performance compared to other methods.
* 5 pages, 2 figures. IEEE Geoscience and Remote Sensing Letters (2025)
Via

Apr 27, 2025
Abstract:Hyperspectral image (HSI) classification presents significant challenges due to the high dimensionality, spectral redundancy, and limited labeled data typically available in real-world applications. To address these issues and optimize classification performance, we propose a novel band selection strategy known as Iterative Wavelet-based Gradient Sampling (IWGS). This method incrementally selects the most informative spectral bands by analyzing gradients within the wavelet-transformed domain, enabling efficient and targeted dimensionality reduction. Unlike traditional selection methods, IWGS leverages the multi-resolution properties of wavelets to better capture subtle spectral variations relevant for classification. The iterative nature of the approach ensures that redundant or noisy bands are systematically excluded while maximizing the retention of discriminative features. We conduct comprehensive experiments on two widely-used benchmark HSI datasets: Houston 2013 and Indian Pines. Results demonstrate that IWGS consistently outperforms state-of-the-art band selection and classification techniques in terms of both accuracy and computational efficiency. These improvements make our method especially suitable for deployment in edge devices or other resource-constrained environments, where memory and processing power are limited. In particular, IWGS achieved an overall accuracy up to 97.8% on Indian Pines for selected classes, confirming its effectiveness and generalizability across different HSI scenarios.
* 16 pages
Via

Apr 22, 2025
Abstract:Hyperspectral image (HSI) classification has been one of the hot topics in remote sensing fields. Recently, the Mamba architecture based on selective state-space models (S6) has demonstrated great advantages in long sequence modeling. However, the unique properties of hyperspectral data, such as high dimensionality and feature inlining, pose challenges to the application of Mamba to HSI classification. To compensate for these shortcomings, we propose an full-field interaction multi-groups Mamba framework (HS-Mamba), which adopts a strategy different from pixel-patch based or whole-image based, but combines the advantages of both. The patches cut from the whole image are sent to multi-groups Mamba, combined with positional information to perceive local inline features in the spatial and spectral domains, and the whole image is sent to a lightweight attention module to enhance the global feature representation ability. Specifically, HS-Mamba consists of a dual-channel spatial-spectral encoder (DCSS-encoder) module and a lightweight global inline attention (LGI-Att) branch. The DCSS-encoder module uses multiple groups of Mamba to decouple and model the local features of dual-channel sequences with non-overlapping patches. The LGI-Att branch uses a lightweight compressed and extended attention module to perceive the global features of the spatial and spectral domains of the unsegmented whole image. By fusing local and global features, high-precision classification of hyperspectral images is achieved. Extensive experiments demonstrate the superiority of the proposed HS-Mamba, outperforming state-of-the-art methods on four benchmark HSI datasets.
Via

Apr 21, 2025
Abstract:Deep neural networks face several challenges in hyperspectral image classification, including high-dimensional data, sparse distribution of ground objects, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To more efficiently adapt to ground object distributions while extracting image features without introducing excessive parameters and skipping redundant information, this paper proposes KANet based on an improved 3D-DenseNet model, consisting of 3D KAN Conv and an adaptive grid update mechanism. By introducing learnable univariate B-spline functions on network edges, specifically by flattening three-dimensional neighborhoods into vectors and applying B-spline-parameterized nonlinear activation functions to replace the fixed linear weights of traditional 3D convolutional kernels, we precisely capture complex spectral-spatial nonlinear relationships in hyperspectral data. Simultaneously, through a dynamic grid adjustment mechanism, we adaptively update the grid point positions of B-splines based on the statistical characteristics of input data, optimizing the resolution of spline functions to match the non-uniform distribution of spectral features, significantly improving the model's accuracy in high-dimensional data modeling and parameter efficiency, effectively alleviating the curse of dimensionality. This characteristic demonstrates superior neural scaling laws compared to traditional convolutional neural networks and reduces overfitting risks in small-sample and high-noise scenarios. KANet enhances model representation capability through a 3D dynamic expert convolution system without increasing network depth or width. The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
Via

Apr 17, 2025
Abstract:Hyperspectral image (HSI) classification remains a challenging task due to the intricate spatial-spectral correlations. Existing transformer models excel in capturing long-range dependencies but often suffer from information redundancy and attention inefficiencies, limiting their ability to model fine-grained relationships crucial for HSI classification. To overcome these limitations, this work proposes MemFormer, a lightweight and memory-enhanced transformer. MemFormer introduces a memory-enhanced multi-head attention mechanism that iteratively refines a dynamic memory module, enhancing feature extraction while reducing redundancy across layers. Additionally, a dynamic memory enrichment strategy progressively captures complex spatial and spectral dependencies, leading to more expressive feature representations. To further improve structural consistency, we incorporate a spatial-spectral positional encoding (SSPE) tailored for HSI data, ensuring continuity without the computational burden of convolution-based approaches. Extensive experiments on benchmark datasets demonstrate that MemFormer achieves superior classification accuracy, outperforming state-of-the-art methods.
Via

Apr 17, 2025
Abstract:Deep neural networks face several challenges in hyperspectral image classification, including high-dimensional data, sparse distribution of ground objects, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To more efficiently adapt to ground object distributions while extracting image features without introducing excessive parameters and skipping redundant information, this paper proposes EKGNet based on an improved 3D-DenseNet model, consisting of a context-aware mapping network and a dynamic kernel generation module. The context-aware mapping module translates global contextual information of hyperspectral inputs into instructions for combining base convolutional kernels, while the dynamic kernels are composed of K groups of base convolutions, analogous to K different types of experts specializing in fundamental patterns across various dimensions. The mapping module and dynamic kernel generation mechanism form a tightly coupled system - the former generates meaningful combination weights based on inputs, while the latter constructs an adaptive expert convolution system using these weights. This dynamic approach enables the model to focus more flexibly on key spatial structures when processing different regions, rather than relying on the fixed receptive field of a single static convolutional kernel. EKGNet enhances model representation capability through a 3D dynamic expert convolution system without increasing network depth or width. The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
* arXiv admin note: substantial text overlap with arXiv:2503.23472
Via

Apr 15, 2025
Abstract:Deep neural networks face numerous challenges in hyperspectral image classification, including high-dimensional data, sparse ground object distributions, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To better adapt to ground object distributions while expanding receptive fields without introducing excessive parameters and skipping redundant information, this paper proposes WCNet, an improved 3D-DenseNet model integrated with wavelet transforms. We introduce wavelet transforms to effectively extend convolutional receptive fields and guide CNNs to better respond to low frequencies through cascading, termed wavelet convolution. Each convolution focuses on different frequency bands of the input signal with gradually increasing effective ranges. This process enables greater emphasis on low-frequency components while adding only a small number of trainable parameters. This dynamic approach allows the model to flexibly focus on critical spatial structures when processing different regions, rather than relying on fixed receptive fields of single static kernels. The Wavelet Conv module enhances model representation capability by expanding receptive fields through 3D wavelet transforms without increasing network depth or width. Experimental results demonstrate superior performance on the IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification methods.
* arXiv admin note: substantial text overlap with arXiv:2504.04463
Via

Apr 15, 2025
Abstract:Although Mamba models significantly improve hyperspectral image (HSI) classification, one critical challenge is the difficulty in building the sequence of Mamba tokens efficiently. This paper presents a Sparse Deformable Mamba (SDMamba) approach for enhanced HSI classification, with the following contributions. First, to enhance Mamba sequence, an efficient Sparse Deformable Sequencing (SDS) approach is designed to adaptively learn the ''optimal" sequence, leading to sparse and deformable Mamba sequence with increased detail preservation and decreased computations. Second, to boost spatial-spectral feature learning, based on SDS, a Sparse Deformable Spatial Mamba Module (SDSpaM) and a Sparse Deformable Spectral Mamba Module (SDSpeM) are designed for tailored modeling of the spatial information spectral information. Last, to improve the fusion of SDSpaM and SDSpeM, an attention based feature fusion approach is designed to integrate the outputs of the SDSpaM and SDSpeM. The proposed method is tested on several benchmark datasets with many state-of-the-art approaches, demonstrating that the proposed approach can achieve higher accuracy with less computation, and better detail small-class preservation capability.
Via

Apr 06, 2025
Abstract:Deep neural networks face several challenges in hyperspectral image classification, including complex and sparse ground object distributions, small clustered structures, and elongated multi-branch features that often lead to missing detections. To better adapt to ground object distributions and achieve adaptive dynamic feature responses while skipping redundant information, this paper proposes a Spatial-Geometry Enhanced 3D Dynamic Snake Network (SG-DSCNet) based on an improved 3D-DenseNet model. The network employs Dynamic Snake Convolution (DSCConv), which introduces deformable offsets to enhance kernel flexibility through constrained self-learning, thereby improving regional perception of ground objects. Additionally, we propose a multi-view feature fusion strategy that generates multiple morphological kernel templates from DSCConv to observe target structures from different perspectives and achieve efficient feature fusion through summarizing key characteristics. This dynamic approach enables the model to focus more flexibly on critical spatial structures when processing different regions, rather than relying on fixed receptive fields of single static kernels. The DSC module enhances model representation capability through dynamic kernel aggregation without increasing network depth or width. Experimental results demonstrate superior performance on the IN, UP, and KSC datasets, outperforming mainstream hyperspectral classification methods.
Via
