Topic:Head Pose Estimation
What is Head Pose Estimation? Head pose estimation is the process of estimating the orientation of a person's head in images or videos.
Papers and Code
Jun 25, 2025
Abstract:Gestures enable non-verbal human-robot communication, especially in noisy environments like agile production. Traditional deep learning-based gesture recognition relies on task-specific architectures using images, videos, or skeletal pose estimates as input. Meanwhile, Vision Foundation Models (VFMs) and Vision Language Models (VLMs) with their strong generalization abilities offer potential to reduce system complexity by replacing dedicated task-specific modules. This study investigates adapting such models for dynamic, full-body gesture recognition, comparing V-JEPA (a state-of-the-art VFM), Gemini Flash 2.0 (a multimodal VLM), and HD-GCN (a top-performing skeleton-based approach). We introduce NUGGET, a dataset tailored for human-robot communication in intralogistics environments, to evaluate the different gesture recognition approaches. In our experiments, HD-GCN achieves best performance, but V-JEPA comes close with a simple, task-specific classification head - thus paving a possible way towards reducing system complexity, by using it as a shared multi-task model. In contrast, Gemini struggles to differentiate gestures based solely on textual descriptions in the zero-shot setting, highlighting the need of further research on suitable input representations for gestures.
Via

Jun 12, 2025
Abstract:Autonomous surface vessels (ASVs) are increasingly vital for marine science, offering robust platforms for underwater mapping and inspection. Accurate state estimation, particularly of vehicle pose, is paramount for precise seafloor mapping, as even small surface deviations can have significant consequences when sensing the seafloor below. To address this challenge, we propose an Invariant Extended Kalman Filter (InEKF) framework designed to integrate partial orientation measurements. While conventional estimation often relies on relative position measurements to fixed landmarks, open ocean ASVs primarily observe a receding horizon. We leverage forward-facing monocular cameras to estimate roll and pitch with respect to this horizon, which provides yaw-ambiguous partial orientation information. To effectively utilize these measurements within the InEKF, we introduce a novel framework for incorporating such partial orientation data. This approach contrasts with traditional InEKF implementations that assume full orientation measurements and is particularly relevant for planar vehicle motion constrained to a "seafaring plane." This paper details the developed InEKF framework; its integration with horizon-based roll/pitch observations and dual-antenna GPS heading measurements for ASV state estimation; and provides a comparative analysis against the InEKF using full orientation and a Multiplicative EKF (MEKF). Our results demonstrate the efficacy and robustness of the proposed partial orientation measurements for accurate ASV state estimation in open ocean environments.
* Presented at the 2025 IEEE ICRA Workshop on Field Robotics. 8 pages,
4 figures, 2 tables
Via

Jun 12, 2025
Abstract:Accurate automatic screening of minors in unconstrained images demands models that are robust to distribution shift and resilient to the children under-representation in publicly available data. To overcome these issues, we propose a multi-task architecture with dedicated under/over-age discrimination tasks based on a frozen FaRL vision-language backbone joined with a compact two-layer MLP that shares features across one age-regression head and four binary under-age heads for age thresholds of 12, 15, 18, and 21 years, focusing on the legally critical age range. To address the severe class imbalance, we introduce an $\alpha$-reweighted focal-style loss and age-balanced mini-batch sampling, which equalizes twelve age bins during stochastic optimization. Further improvement is achieved with an age gap that removes edge cases from the loss. Moreover, we set a rigorous evaluation by proposing the Overall Under-Age Benchmark, with 303k cleaned training images and 110k test images, defining both the "ASORES-39k" restricted overall test, which removes the noisiest domains, and the age estimation wild shifts test "ASWIFT-20k" of 20k-images, stressing extreme pose ($>$45{\deg}), expression, and low image quality to emulate real-world shifts. Trained on the cleaned overall set with resampling and age gap, our multiage model "F" lowers the root-mean-square-error on the ASORES-39k restricted test from 5.733 (age-only baseline) to 5.656 years and lifts under-18 detection from F2 score of 0.801 to 0.857 at 1% false-adult rate. Under the domain shift to the wild data of ASWIFT-20k, the same configuration nearly sustains 0.99 recall while boosting F2 from 0.742 to 0.833 with respect to the age-only baseline, demonstrating strong generalization under distribution shift. For the under-12 and under-15 tasks, the respective boosts in F2 are from 0.666 to 0.955 and from 0.689 to 0.916, respectively.
Via

May 28, 2025
Abstract:Estimating human pose using a front-facing egocentric camera is essential for applications such as sports motion analysis, VR/AR, and AI for wearable devices. However, many existing methods rely on RGB cameras and do not account for low-light environments or motion blur. Event-based cameras have the potential to address these challenges. In this work, we introduce a novel task of human pose estimation using a front-facing event-based camera mounted on the head and propose D-EventEgo, the first framework for this task. The proposed method first estimates the head poses, and then these are used as conditions to generate body poses. However, when estimating head poses, the presence of dynamic objects mixed with background events may reduce head pose estimation accuracy. Therefore, we introduce the Motion Segmentation Module to remove dynamic objects and extract background information. Extensive experiments on our synthetic event-based dataset derived from EgoBody, demonstrate that our approach outperforms our baseline in four out of five evaluation metrics in dynamic environments.
* Accepted at ICIP 2025, Project Page:
https://wataru823.github.io/D-EventEgo/
Via

Jun 09, 2025
Abstract:Understanding multimodal signals in egocentric vision, such as RGB video, depth, camera poses, and gaze, is essential for applications in augmented reality, robotics, and human-computer interaction. These capabilities enable systems to better interpret the camera wearer's actions, intentions, and surrounding environment. However, building large-scale egocentric multimodal and multitask models presents unique challenges. Egocentric data are inherently heterogeneous, with large variations in modality coverage across devices and settings. Generating pseudo-labels for missing modalities, such as gaze or head-mounted camera trajectories, is often infeasible, making standard supervised learning approaches difficult to scale. Furthermore, dynamic camera motion and the complex temporal and spatial structure of first-person video pose additional challenges for the direct application of existing multimodal foundation models. To address these challenges, we introduce a set of efficient temporal tokenizers and propose EgoM2P, a masked modeling framework that learns from temporally aware multimodal tokens to train a large, general-purpose model for egocentric 4D understanding. This unified design supports multitasking across diverse egocentric perception and synthesis tasks, including gaze prediction, egocentric camera tracking, and monocular depth estimation from egocentric video. EgoM2P also serves as a generative model for conditional egocentric video synthesis. Across these tasks, EgoM2P matches or outperforms specialist models while being an order of magnitude faster. We will fully open-source EgoM2P to support the community and advance egocentric vision research. Project page: https://egom2p.github.io/
Via

Jun 06, 2025
Abstract:Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.
* Astra Technical Report
Via

Jun 05, 2025
Abstract:In the field of Multi-Person Pose Estimation (MPPE), Radio Frequency (RF)-based methods can operate effectively regardless of lighting conditions and obscured line-of-sight situations. Existing RF-based MPPE methods typically involve either 1) converting RF signals into heatmap images through complex preprocessing, or 2) applying a deep embedding network directly to raw RF signals. The first approach, while delivering decent performance, is computationally intensive and time-consuming. The second method, though simpler in preprocessing, results in lower MPPE accuracy and generalization performance. This paper proposes an efficient and lightweight one-stage MPPE model based on raw RF signals. By sub-grouping RF signals and embedding them using a shared single-layer CNN followed by multi-head attention, this model outperforms previous methods that embed all signals at once through a large and deep CNN. Additionally, we propose a new self-supervised learning (SSL) method that takes inputs from both one unmasked subgroup and the remaining masked subgroups to predict the latent representations of the masked data. Empirical results demonstrate that our model improves MPPE accuracy by up to 15 in PCKh@0.5 compared to previous methods using raw RF signals. Especially, the proposed SSL method has shown to significantly enhance performance improvements when placed in new locations or in front of obstacles at RF antennas, contributing to greater performance gains as the number of people increases. Our code and dataset is open at Github. https://github.com/sshnan7/SOSPE .
* CIKM 2024
Via

May 28, 2025
Abstract:Human pose estimation based on Channel State Information (CSI) has emerged as a promising approach for non-intrusive and precise human activity monitoring, yet faces challenges including accurate multi-person pose recognition and effective CSI feature learning. This paper presents MultiFormer, a wireless sensing system that accurately estimates human pose through CSI. The proposed system adopts a Transformer based time-frequency dual-token feature extractor with multi-head self-attention. This feature extractor is able to model inter-subcarrier correlations and temporal dependencies of the CSI. The extracted CSI features and the pose probability heatmaps are then fused by Multi-Stage Feature Fusion Network (MSFN) to enforce the anatomical constraints. Extensive experiments conducted on on the public MM-Fi dataset and our self-collected dataset show that the MultiFormer achieves higher accuracy over state-of-the-art approaches, especially for high-mobility keypoints (wrists, elbows) that are particularly difficult for previous methods to accurately estimate.
Via

May 23, 2025
Abstract:We study multi-dataset training (MDT) for pose estimation, where skeletal heterogeneity presents a unique challenge that existing methods have yet to address. In traditional domains, \eg regression and classification, MDT typically relies on dataset merging or multi-head supervision. However, the diversity of skeleton types and limited cross-dataset supervision complicate integration in pose estimation. To address these challenges, we introduce PoseBH, a new MDT framework that tackles keypoint heterogeneity and limited supervision through two key techniques. First, we propose nonparametric keypoint prototypes that learn within a unified embedding space, enabling seamless integration across skeleton types. Second, we develop a cross-type self-supervision mechanism that aligns keypoint predictions with keypoint embedding prototypes, providing supervision without relying on teacher-student models or additional augmentations. PoseBH substantially improves generalization across whole-body and animal pose datasets, including COCO-WholeBody, AP-10K, and APT-36K, while preserving performance on standard human pose benchmarks (COCO, MPII, and AIC). Furthermore, our learned keypoint embeddings transfer effectively to hand shape estimation (InterHand2.6M) and human body shape estimation (3DPW). The code for PoseBH is available at: https://github.com/uyoung-jeong/PoseBH.
* accepted to CVPR 2025
Via

May 27, 2025
Abstract:Road potholes pose a serious threat to driving safety and comfort, making their detection and assessment a critical task in fields such as autonomous driving. When driving vehicles, the operators usually avoid large potholes and approach smaller ones at reduced speeds to ensure safety. Therefore, accurately estimating pothole area is of vital importance. Most existing vision-based methods rely on distance priors to construct geometric models. However, their performance is susceptible to variations in camera angles and typically relies on the assumption of a flat road surface, potentially leading to significant errors in complex real-world environments. To address these problems, a robust pothole area estimation framework that integrates object detection and monocular depth estimation in a video stream is proposed in this paper. First, to enhance pothole feature extraction and improve the detection of small potholes, ACSH-YOLOv8 is proposed with ACmix module and the small object detection head. Then, the BoT-SORT algorithm is utilized for pothole tracking, while DepthAnything V2 generates depth maps for each frame. With the obtained depth maps and potholes labels, a novel Minimum Bounding Triangulated Pixel (MBTP) method is proposed for pothole area estimation. Finally, Kalman Filter based on Confidence and Distance (CDKF) is developed to maintain consistency of estimation results across consecutive frames. The results show that ACSH-YOLOv8 model achieves an AP(50) of 76.6%, representing a 7.6% improvement over YOLOv8. Through CDKF optimization across consecutive frames, pothole predictions become more robust, thereby enhancing the method's practical applicability.
Via
