Topic:Head Pose Estimation
What is Head Pose Estimation? Head pose estimation is the process of estimating the orientation of a person's head in images or videos.
Papers and Code
Aug 14, 2025
Abstract:Although appearance-based point-of-gaze (PoG) estimation has improved, the estimators still struggle to generalize across individuals due to personal differences. Therefore, person-specific calibration is required for accurate PoG estimation. However, calibrated PoG estimators are often sensitive to head pose variations. To address this, we investigate the key factors influencing calibrated estimators and explore pose-robust calibration strategies. Specifically, we first construct a benchmark, MobilePoG, which includes facial images from 32 individuals focusing on designated points under either fixed or continuously changing head poses. Using this benchmark, we systematically analyze how the diversity of calibration points and head poses influences estimation accuracy. Our experiments show that introducing a wider range of head poses during calibration improves the estimator's ability to handle pose variation. Building on this insight, we propose a dynamic calibration strategy in which users fixate on calibration points while moving their phones. This strategy naturally introduces head pose variation during a user-friendly and efficient calibration process, ultimately producing a better calibrated PoG estimator that is less sensitive to head pose variations than those using conventional calibration strategies. Codes and datasets are available at our project page.
* Accepted for British Machine Vision Conference (BMVC) 2025
Via

Aug 13, 2025
Abstract:Robot manipulation research still suffers from significant data scarcity: even the largest robot datasets are orders of magnitude smaller and less diverse than those that fueled recent breakthroughs in language and vision. We introduce Masquerade, a method that edits in-the-wild egocentric human videos to bridge the visual embodiment gap between humans and robots and then learns a robot policy with these edited videos. Our pipeline turns each human video into robotized demonstrations by (i) estimating 3-D hand poses, (ii) inpainting the human arms, and (iii) overlaying a rendered bimanual robot that tracks the recovered end-effector trajectories. Pre-training a visual encoder to predict future 2-D robot keypoints on 675K frames of these edited clips, and continuing that auxiliary loss while fine-tuning a diffusion policy head on only 50 robot demonstrations per task, yields policies that generalize significantly better than prior work. On three long-horizon, bimanual kitchen tasks evaluated in three unseen scenes each, Masquerade outperforms baselines by 5-6x. Ablations show that both the robot overlay and co-training are indispensable, and performance scales logarithmically with the amount of edited human video. These results demonstrate that explicitly closing the visual embodiment gap unlocks a vast, readily available source of data from human videos that can be used to improve robot policies.
Via

Jul 29, 2025
Abstract:Wide-baseline panorama reconstruction has emerged as a highly effective and pivotal approach for not only achieving geometric reconstruction of the surrounding 3D environment, but also generating highly realistic and immersive novel views. Although existing methods have shown remarkable performance across various benchmarks, they are predominantly reliant on accurate pose information. In real-world scenarios, the acquisition of precise pose often requires additional computational resources and is highly susceptible to noise. These limitations hinder the broad applicability and practicality of such methods. In this paper, we present PanoSplatt3R, an unposed wide-baseline panorama reconstruction method. We extend and adapt the foundational reconstruction pretrainings from the perspective domain to the panoramic domain, thus enabling powerful generalization capabilities. To ensure a seamless and efficient domain-transfer process, we introduce RoPE rolling that spans rolled coordinates in rotary positional embeddings across different attention heads, maintaining a minimal modification to RoPE's mechanism, while modeling the horizontal periodicity of panorama images. Comprehensive experiments demonstrate that PanoSplatt3R, even in the absence of pose information, significantly outperforms current state-of-the-art methods. This superiority is evident in both the generation of high-quality novel views and the accuracy of depth estimation, thereby showcasing its great potential for practical applications. Project page: https://npucvr.github.io/PanoSplatt3R
* Accepted to ICCV 2025
Via

Jul 02, 2025
Abstract:This paper presents an extension of the DRIFT invariant state estimation framework, enabling robust fusion of GPS and IMU data for accurate pose and heading estimation. Originally developed for testing and usage on a marine autonomous surface vehicle (ASV), this approach can also be utilized on other mobile systems. Building upon the original proprioceptive only DRIFT algorithm, we develop a symmetry-preserving sensor fusion pipeline utilizing the invariant extended Kalman filter (InEKF) to integrate global position updates from GPS directly into the correction step. Crucially, we introduce a novel heading correction mechanism that leverages GPS course-over-ground information in conjunction with IMU orientation, overcoming the inherent unobservability of yaw in dead-reckoning. The system was deployed and validated on a customized Blue Robotics BlueBoat, but the methodological focus is on the algorithmic approach to fusing exteroceptive and proprioceptive sensors for drift-free localization and reliable orientation estimation. This work provides an open source solution for accurate yaw observation and localization in challenging or GPS-degraded conditions, and lays the groundwork for future experimental and comparative studies.
* 6 pages
Via

Jul 01, 2025
Abstract:As modern computing advances, new interaction paradigms have emerged, particularly in Augmented Reality (AR), which overlays virtual interfaces onto physical objects. This evolution poses challenges in machine perception, especially for tasks like 3D object pose estimation in complex, dynamic environments. Our project addresses critical issues in human-robot interaction within mobile AR, focusing on non-intrusive, spatially aware interfaces. We present URSA, an LLM-driven immersive AR system developed for NASA's 2023-2024 SUITS challenge, targeting future spaceflight needs such as the Artemis missions. URSA integrates three core technologies: a head-mounted AR device (e.g., HoloLens) for intuitive visual feedback, voice control powered by large language models for hands-free interaction, and robot tracking algorithms that enable accurate 3D localization in dynamic settings. To enhance precision, we leverage digital twin localization technologies, using datasets like DTTD-Mobile and specialized hardware such as the ZED2 camera for real-world tracking under noise and occlusion. Our system enables real-time robot control and monitoring via an AR interface, even in the absence of ground-truth sensors--vital for hazardous or remote operations. Key contributions include: (1) a non-intrusive AR interface with LLM-based voice input; (2) a ZED2-based dataset tailored for non-rigid robotic bodies; (3) a Local Mission Control Console (LMCC) for mission visualization; (4) a transformer-based 6DoF pose estimator (DTTDNet) optimized for depth fusion and real-time tracking; and (5) end-to-end integration for astronaut mission support. This work advances digital twin applications in robotics, offering scalable solutions for both aerospace and industrial domains.
Via

May 28, 2025
Abstract:Estimating human pose using a front-facing egocentric camera is essential for applications such as sports motion analysis, VR/AR, and AI for wearable devices. However, many existing methods rely on RGB cameras and do not account for low-light environments or motion blur. Event-based cameras have the potential to address these challenges. In this work, we introduce a novel task of human pose estimation using a front-facing event-based camera mounted on the head and propose D-EventEgo, the first framework for this task. The proposed method first estimates the head poses, and then these are used as conditions to generate body poses. However, when estimating head poses, the presence of dynamic objects mixed with background events may reduce head pose estimation accuracy. Therefore, we introduce the Motion Segmentation Module to remove dynamic objects and extract background information. Extensive experiments on our synthetic event-based dataset derived from EgoBody, demonstrate that our approach outperforms our baseline in four out of five evaluation metrics in dynamic environments.
* Accepted at ICIP 2025, Project Page:
https://wataru823.github.io/D-EventEgo/
Via

Jun 25, 2025
Abstract:Gestures enable non-verbal human-robot communication, especially in noisy environments like agile production. Traditional deep learning-based gesture recognition relies on task-specific architectures using images, videos, or skeletal pose estimates as input. Meanwhile, Vision Foundation Models (VFMs) and Vision Language Models (VLMs) with their strong generalization abilities offer potential to reduce system complexity by replacing dedicated task-specific modules. This study investigates adapting such models for dynamic, full-body gesture recognition, comparing V-JEPA (a state-of-the-art VFM), Gemini Flash 2.0 (a multimodal VLM), and HD-GCN (a top-performing skeleton-based approach). We introduce NUGGET, a dataset tailored for human-robot communication in intralogistics environments, to evaluate the different gesture recognition approaches. In our experiments, HD-GCN achieves best performance, but V-JEPA comes close with a simple, task-specific classification head - thus paving a possible way towards reducing system complexity, by using it as a shared multi-task model. In contrast, Gemini struggles to differentiate gestures based solely on textual descriptions in the zero-shot setting, highlighting the need of further research on suitable input representations for gestures.
Via

Jun 12, 2025
Abstract:Autonomous surface vessels (ASVs) are increasingly vital for marine science, offering robust platforms for underwater mapping and inspection. Accurate state estimation, particularly of vehicle pose, is paramount for precise seafloor mapping, as even small surface deviations can have significant consequences when sensing the seafloor below. To address this challenge, we propose an Invariant Extended Kalman Filter (InEKF) framework designed to integrate partial orientation measurements. While conventional estimation often relies on relative position measurements to fixed landmarks, open ocean ASVs primarily observe a receding horizon. We leverage forward-facing monocular cameras to estimate roll and pitch with respect to this horizon, which provides yaw-ambiguous partial orientation information. To effectively utilize these measurements within the InEKF, we introduce a novel framework for incorporating such partial orientation data. This approach contrasts with traditional InEKF implementations that assume full orientation measurements and is particularly relevant for planar vehicle motion constrained to a "seafaring plane." This paper details the developed InEKF framework; its integration with horizon-based roll/pitch observations and dual-antenna GPS heading measurements for ASV state estimation; and provides a comparative analysis against the InEKF using full orientation and a Multiplicative EKF (MEKF). Our results demonstrate the efficacy and robustness of the proposed partial orientation measurements for accurate ASV state estimation in open ocean environments.
* Presented at the 2025 IEEE ICRA Workshop on Field Robotics. 8 pages,
4 figures, 2 tables
Via

Jun 12, 2025
Abstract:Accurate automatic screening of minors in unconstrained images demands models that are robust to distribution shift and resilient to the children under-representation in publicly available data. To overcome these issues, we propose a multi-task architecture with dedicated under/over-age discrimination tasks based on a frozen FaRL vision-language backbone joined with a compact two-layer MLP that shares features across one age-regression head and four binary under-age heads for age thresholds of 12, 15, 18, and 21 years, focusing on the legally critical age range. To address the severe class imbalance, we introduce an $\alpha$-reweighted focal-style loss and age-balanced mini-batch sampling, which equalizes twelve age bins during stochastic optimization. Further improvement is achieved with an age gap that removes edge cases from the loss. Moreover, we set a rigorous evaluation by proposing the Overall Under-Age Benchmark, with 303k cleaned training images and 110k test images, defining both the "ASORES-39k" restricted overall test, which removes the noisiest domains, and the age estimation wild shifts test "ASWIFT-20k" of 20k-images, stressing extreme pose ($>$45{\deg}), expression, and low image quality to emulate real-world shifts. Trained on the cleaned overall set with resampling and age gap, our multiage model "F" lowers the root-mean-square-error on the ASORES-39k restricted test from 5.733 (age-only baseline) to 5.656 years and lifts under-18 detection from F2 score of 0.801 to 0.857 at 1% false-adult rate. Under the domain shift to the wild data of ASWIFT-20k, the same configuration nearly sustains 0.99 recall while boosting F2 from 0.742 to 0.833 with respect to the age-only baseline, demonstrating strong generalization under distribution shift. For the under-12 and under-15 tasks, the respective boosts in F2 are from 0.666 to 0.955 and from 0.689 to 0.916, respectively.
Via

Jun 06, 2025
Abstract:Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.
* Astra Technical Report
Via
